Publications

Results 1–25 of 106

Search results

Jump to search filters

KOMPASS-II: Compaction of Crushed salt for Safe Containment – Phase 2

Coulibaly, Jibril B.; Friedenberg, Larissa; Bartol, Jeroen; Foulk, James W.; Beese, Steffen; Czaikowski, Oliver; De Bresser, Hans; Dusterloh, Uwe; Eickemeier, Ralf; Gartzke, Anne; Hangx, Suzanne; Jantschik, Kyra; Laurich, Ben; Lerch, Christian; Lerche, Svetlana; Ludeling, Christoph; Mills, Melissa M.; Muller-Hoeppe, Nina; Popp, Till; Rabbel, Ole; Rahmig, Michael; Reedlunn, Benjamin; Rogalski, Abram; Rolke, Christopher; Saruulbayar, Nachinzorig; Spiers, Christopher J.; Svensson, Kristoff; Thiedau, Jan; Van Oosterhout, Bart; Zemke, Kornelia

Long-term stable sealing elements are a basic component in the safety concept for a possible repository for heat-emitting radioactive waste in rock salt. The sealing elements will be part of the closure concept for drifts and shafts. They will be made from a welldefinied crushed salt in employ a specific manufacturing process. The use of crushed salt as geotechnical barrier as required by the German Site Selection Act from 2017 /STA 17/ represents a paradigm change in the safety function of crushed salt, since this material was formerly only considered as stabilizing backfill for the host rock. The demonstration of the long-term stability and impermeability of crushed salt is crucial for its use as a geotechnical barrier. The KOMPASS-II project, is a follow-up of the KOMPASS-I project and continues the work with focus on improving the understanding of the thermal-hydraulic-mechanical (THM) coupled processes in crushed salt compaction with the objective to enhance the scientific competence for using crushed salt for the long-term isolation of high-level nuclear waste within rock salt repositories. The project strives for an adequate characterization of the compaction process and the essential influencing parameters, as well as a robust and reliable long-term prognosis using validated constitutive models. For this purpose, experimental studies on long-term compaction tests are combined with microstructural investigations and numerical modeling. The long-term compaction tests in this project focused on the effect of mean stress, deviatoric stress and temperature on the compaction behavior of crushed salt. A laboratory benchmark was performed identifying a variability in compaction behavior. Microstructural investigations were executed with the objective to characterize the influence of pre-compaction procedure, humidity content and grain size/grain size distribution on the overall compaction process of crushed salt with respect to the deformation mechanisms. The created database was used for benchmark calculations aiming for improvement and optimization of a large number of constitutive models available for crushed salt. The models were calibrated, and the improvement process was made visible applying the virtual demonstrator.

More Details

Library of Advanced Materials for Engineering (LAMÉ) 5.16

Lester, Brian T.; Long, Kevin N.; Reedlunn, Benjamin; Scherzinger, William M.; Vignes, Chet; Cundiff, K.N.

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Salt International Collaborations FY23 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Coulibaly, Jibril B.; Reedlunn, Benjamin; Foulk, James W.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-23SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations.

More Details

Compaction of crushed salt for the safe containment – Overview of Phase 2 of the KOMPASS project

Friedenberg, Larissa; Czaikowski, Oliver; Lerch, Christian; Muller Hoeppe, Nina; Rahmig, Michael; Bartol, Jeroen; Dusterloh, Uwe; Lerche, Svetlana; Saruulbayar, Nachinzorig; Lippmann-Pipke, Johanna; Laurich, Ben; Svensson, Kristoff; Zemke, Kornelia; Thiedau, Jan; Liu, Wenting; Gartzke, Anne; Popp, Till; Ludeling, Christoph; Rolke, C.; Rabbel, Ole; Reedlunn, Benjamin; Foulk, James W.; Mills, Melissa M.; Coulibaly, Jibril B.; Spiers, Chris; De Bresser, Hans; Hangx, Suzanne; Van Oosterhout, Bart

Abstract not provided.

Improved Compaction Experiments and Modeling of Waste Isolation Pilot Plant Standard, Non-degraded, Waste Containers

Jensen, Richard P.; Broome, Scott T.; Herrick, Courtney G.; Reedlunn, Benjamin

A credible simulation of disposal room porosity at the Waste Isolation Pilot Plant (WIPP) requires a tenable compaction model for the 55-gallon waste containers within the room. A review of the legacy waste material model, however, revealed several out-of-date and untested assumptions that could affect the model’s compaction behavior. For example, the legacy model predicted non-physical tensile out-of-plane stresses under plane strain compression. (Plane strain compression is similar to waste compaction in the middle of a long drift.) Consequently, a suite of new compaction experiments were performed on containers filled with surrogate, non-degraded, waste. The new experiments involved uniaxial, triaxial, and hydrostatic compaction tests on quarter-scale and full-scale containers. Special effort was made to measure the volume strain during uniaxial and triaxial tests, so that the lateral strain could be inferred from the axial and volume strain. These experimental measurements were then used to calibrate a pressure dependent, viscoplastic, constitutive model for the homogenized compaction behavior of the waste containers. This new waste material model’s predictions agreed far better with the experimental measurements than the legacy model’s predictions, especially under triaxial and hydrostatic conditions. Under plane strain compression, the new model predicted reasonable compressive out-of-plane stresses, instead of tensile stresses. Moreover, the new model’s plane strain behavior was substantially weaker for the same strain, yet substantially stronger for the same porosity, than the legacy model’s behavior. Although room for improvement exists, the new model appears ready for prudent engineering use.

More Details

Improved Modeling of Waste Isolation Pilot Plant Disposal Room Porosity

Vignes, Chet; Foulk, James W.; Reedlunn, Benjamin

Disposal rooms at the Waste Isolation Pilot Plant (WIPP) contain waste and gas, and their porosity evolves over time. This report presents several improvements to the disposal room porosity model and presents new porosity predictions for use in future WIPP Performance Assessment activities. The improvements pertain to three sub-models: the geomechanical model, the waste compaction model, and the gas pressurization model. The impacts of each major improvement were quantified and the new porosity predictions were shown to be both mesh and domain size converged. Also, sensitivity studies on the disposal room horizon, clay seam friction coefficients, and homogenized waste representation were performed to support assumptions in the disposal room porosity model. To compare the legacy and new porosity predictions, the simulation results were plotted as a response surface, where gas pressure and time are inputs and porosity is the output. The new porosity response surface is insensitive to pressures beneath lithostatic pressure and highly sensitive to pressures above lithostatic pressure. The legacy porosity response surface, on the other hand, has moderate porosity gradients over all pressures. The new porosity response surface has a stronger scientific foundation than the legacy surface and may now be used for Compliance Decision Analyses.

More Details

Simulations of Criticality Control Overpack Container Compaction at the Waste Isolation Pilot Plant

Reedlunn, Benjamin; Foulk, James W.; Wilkes, John R.; Bignell, John

Criticality Control Overpack (CCO) containers are being considered for the disposal of defense-related nuclear waste at the Waste Isolation Pilot Plant (WIPP). At WIPP, these containers would be placed in underground disposal rooms, which will naturally close and compact the containers closer to one another over several centuries. This report details simulations to predict the final container configuration as an input to nuclear criticality assessments. Each container was discretely modeled, including the plywood and stainless steel pipe inside the 55-gallon drum, in order to capture its complex mechanical behavior. Although these high-fidelity simulations were computationally intensive, several different material models were considered in an attempt to reasonably bound the horizontal and vertical compaction percentages. When exceptionally strong materials were used for the containers, the horizontal and vertical closure respectively stabilized at 43:9 % and 93:7 %. At the other extreme, when the containers completely degraded and the clay seams between the salt layers were glued, the horizontal and vertical closure reached respective final values of 48:6 % and 100 %.

More Details

Library of Advanced Materials for Engineering (LAMÉ) 5.10

Lester, Brian T.; Long, Kevin N.; Scherzinger, William M.; Vignes, Chet; Reedlunn, Benjamin

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Salt International Collaborations (FY22 Update)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Reedlunn, Benjamin; Sobolik, Steven; Foulk, James W.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-22SN010303063. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations. The work summarized in this annual update has occurred during the COVID-19 pandemic, and little international or domestic travel has occurred. Most of the collaborations have been conducted via email or as virtual meetings, but a slow return to travel and in-person meetings has begun.

More Details

Library of Advanced Materials for Engineering (LAM) 5.8

Lester, Brian T.; Vignes, Chet; Scherzinger, William M.; Long, Kevin N.; Reedlunn, Benjamin; Cundiff, K.N.

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Library of Advanced Materials for Engineering ((LAMÉ) 5.6

Lester, Brian T.; Scherzinger, William M.; Long, Kevin N.; Vignes, Chet; Reedlunn, Benjamin

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

A reinvestigation into Munson's model for room closure in bedded rock salt

International Journal of Rock Mechanics and Mining Sciences

Reedlunn, Benjamin; Arguello, J.G.; Hansen, Frank D.

Accurate predictions of room closure are important for hazardous waste repositories in rock salt formations, such as the Waste Isolation Pilot Plant (WIPP). When Munson and co-workers simulated several room closure experiments conducted at the WIPP during the 1980's and 1990's, their simulated closure curves closely agreed with the closure measurements. A careful review of their work, however, raised concerns and prompted the reinvestigation in this paper. To begin the reinvestigation, Munson's legacy Room D closure simulation was reasonably recreated in a current-day finite element code. Next, special care was taken to obtain numerically converged results, re-introduce the anhydrite strata intermittently ignored by Munson, and calibrate the Munson–Dawson (M–D) constitutive model for salt as much as possible from laboratory test measurements. When this new model was used to simulate Room D's closure, it under-predicted the horizontal and vertical closure rates by 2.34× and 3.10×, respectively, at 5.7 years after room excavation. As a result, the M–D model was extended to capture the newly established creep behavior at low equivalent stresses (<8MPa) and replace the Tresca with the Hosford equivalent stress. Simulations using the new M–D model over-predicted the horizontal closure rate by 1.15× and under-predicted the vertical closure rate by 1.08× at 5.7 years, averaged over three room closure experiments. Although further improvements could be made, the new model has a stronger scientific foundation than Munson's legacy model and appears ready for careful engineering use.

More Details
Results 1–25 of 106
Results 1–25 of 106