Publications

Results 1–25 of 120
Skip to search filters

Impact of Gold Thickness on Interfacial Evolution and Subsequent Embrittlement of Tin–Lead Solder Joints

Journal of Electronic Materials

Wheeling, Rebecca W.; Vianco, Paul V.; Williams, Shelley W.; Jauregui, Luis J.; Sava Gallis, Dorina F.

Although gold remains a preferred surface finish for components used in high-reliability electronics, rapid developments in this area have left a gap in the fundamental understanding of solder joint gold (Au) embrittlement. Furthermore, as electronic designs scale down in size, the effect of Au content is not well understood on increasingly smaller solder interconnections. As a result, previous findings may have limited applicability. The current study focused on addressing these gaps by investigating the interfacial microstructure that evolves in 63Sn-37Pb solder joints as a function of Au layer thickness. Those findings were correlated to the mechanical performance of the solder joints. Increasing the initial Au concentration decreased the mechanical strength of a joint, but only to a limited degree. Kirkendall voids were the primary contributor to low-strength joints, while brittle fracture within the intermetallic compounds (IMC) layers is less of a factor. The Au embrittlement mechanism appears to be self-limiting, but only once mechanical integrity is degraded. Sufficient void evolution prevents continued diffusion from the remaining Au.

More Details

Dramatic Enhancement of Rare-Earth Metal–Organic Framework Stability Via Metal Cluster Fluorination

JACS Au

Christian, Matthew S.; Fritzsching, Keith F.; Harvey, Jacob H.; Sava Gallis, Dorina F.; Nenoff, T.M.; Rimsza, Jessica R.

Rare-earth polynuclear metal–organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3–OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8–16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ~4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

More Details

Crystal Prediction and Design of Tunable Light Emission in BTB-Based Metal-Organic Frameworks

Advanced Optical Materials

Rimsza, Jessica R.; Henkelis, Susan E.; Rohwer, Lauren E.; Sava Gallis, Dorina F.; Nenoff, T.M.

Metal-organic frameworks (MOFs) have recently been shown to exhibit unique mechanisms of luminescence based on charge transfer between structural units in the framework. These MOFs have the potential to be structural tuned for targeted emission with little or no metal participation. A computationally led, material design and synthesis methodology is presented here that elucidates the mechanisms of light emission in interpenetrated structures comprised of metal centers (M = In, Ga, InGa, InEu) and BTB (1,3,5-Tris(4-carboxyphenyl)benzene) linkers, forming unique luminescent M-BTB MOF frameworks. Gas phase and periodic electronic structure calculations indicate that the intensity of the emission and the wavelength are overwhelmingly controlled by a combination of the number of interacting stacked linkers and their interatomic spacings, respectively. In the MOF, the ionic radii of the metal centers primarily control the expansion or shrinkage of the linker stacking distances. Experimentally, multiple M-BTB-based MOFs are synthesized and their photoluminescence was tested. Experiments validated the modeling by confirming that shifts in the crystal structure result in variations in light emission. Through this material design method, the mechanisms of tuning luminescence properties in interpenetrated M-BTB MOFs have been identified and applied to the design of MOFs with specific wavelength emission based on their structure.

More Details

Programmable Photoluminescence via Intrinsic and DNA-Fluorophore Association in a Mixed Cluster Heterometallic MOF

ACS Applied Materials and Interfaces

Sava Gallis, Dorina F.; Butler, Kimberly B.; Pearce, Charles J.; Valdez, Nichole R.; Rodriguez, Mark A.

A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized. The material is constructed from two chemically distinct, homometallic hexanuclear clusters based on Nd and Yb. Uniquely, the Nd-based cluster is observed here for the first time in a MOF and consists of two staggered Nd μ3-oxo trimers. To generate controlled, multimodal, and tailorable emission with difficult to counterfeit features, the NIR-emissive MOF was post-synthetically modified via a fluorescent DNA oligo labeling design strategy. The surface attachment of several distinct fluorophores, including the simultaneous attachment of up to three distinct fluorescently labeled oligos was achieved, with excitation and emission properties across the visible spectrum (480-800 nm). The DNA inclusion as a secondary covert element in the tag was demonstrated via the detection of SYBR Gold dye association. Importantly, the approach implemented here serves as a rapid and tailorable way to encrypt distinct information in a facile and modular fashion and provides an innovative technology in the quest toward complex optical tags.

More Details

Covert MOF-Based Photoluminescent Tags via Tunable Linker Energetics

ACS Applied Materials and Interfaces

Deneff, Jacob I.; Rohwer, Lauren E.; Butler, Kimberly B.; Valdez, Nichole R.; Rodriguez, Mark A.; Luk, Ting S.; Sava Gallis, Dorina F.

Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.

More Details

Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags

Angewandte Chemie - International Edition

Deneff, Jacob I.; Butler, Kimberly B.; Rohwer, Lauren E.; Pearce, Charles J.; Valdez, Nichole R.; Rodriguez, Mark A.; Luk, Ting S.; Sava Gallis, Dorina F.

Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal–organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.

More Details

NOx Adsorption and Optical Detection in Rare Earth Metal-Organic Frameworks

ACS Applied Materials and Interfaces

Sava Gallis, Dorina F.; Vogel, Dayton J.; Vincent, Grace A.; Rimsza, Jessica R.; Nenoff, T.M.

Acid gases (e.g., NOx and SOx), commonly found in complex chemical and petrochemical streams, require material development for their selective adsorption and removal. Here, we report the NOx adsorption properties in a family of rare earth (RE) metal-organic frameworks (MOFs) materials. Fundamental understanding of the structure-property relationship of NOx adsorption in the RE-DOBDC materials platform was sought via a combined experimental and molecular modeling study. No structural change was noted following humid NOx exposure. Density functional theory (DFT) simulations indicated that H2O has a stronger affinity to bind with the metal center than NO2, while NO2 preferentially binds with the DOBDC ligands. Further modeling results indicate no change in binding energy across the RE elements investigated. Also, stabilization of the NO2 and H2O molecules following adsorption was noted, predicted to be due to hydrogen bonding between the framework ligands and the molecules and nanoconfinement within the MOF structure. This interaction also caused distinct changes in emission spectra, identified experimentally. Calculations indicated that this is due to the adsorption of NO2 molecules onto the DOBDC ligand altering the electronic transitions and the resulting photoluminescent properties, a feature that has potential applications in future sensing technologies.

More Details

Spectroscopically Resolved Binding Sites for the Adsorption of Sarin Gas in a Metal-Organic Framework: Insights beyond Lewis Acidity

Journal of Physical Chemistry Letters

Harvey, Jacob H.; McEntee, Monica L.; Garibay, Sergio J.; Durke, Erin M.; DeCoste, Jared B.; Greathouse, Jeffery A.; Sava Gallis, Dorina F.

Here we report molecular level details regarding the adsorption of sarin (GB) gas in a prototypical zirconium-based metal-organic framework (MOF, UiO-66). By combining predictive modeling and experimental spectroscopic techniques, we unambiguously identify several unique bindings sites within the MOF, using the P=O stretch frequency of GB as a probe. Remarkable agreement between predicted and experimental IR spectrum is demonstrated. As previously hypothesized, the undercoordinated Lewis acid metal site is the most favorable binding site. Yet multiple sites participate in the adsorption process; specifically, the Zr-chelated hydroxyl groups form hydrogen bonds with the GB molecule, and GB weakly interacts with fully coordinated metals. Importantly, this work highlights that subtle orientational effects of bound GB are observable via shifts in characteristic vibrational modes; this finding has large implications for degradation rates and opens a new route for future materials design.

More Details
Results 1–25 of 120
Results 1–25 of 120