Publications

Results 1–25 of 31

Search results

Jump to search filters

On optimizing the sensor spacing for pressure measurements on wind turbine airfoils

Wind Energy Science

Fritz, Erik K.; Kelley, Christopher L.; Brown, Kenneth A.

This research article presents a robust approach to optimizing the layout of pressure sensors around an airfoil. A genetic algorithm and a sequential quadratic programming algorithm are employed to derive a sensor layout best suited to represent the expected pressure distribution and, thus, the lift force. The fact that both optimization routines converge to almost identical sensor layouts suggests that an optimum exists and is reached. By comparing against a cosine-spaced sensor layout, it is demonstrated that the underlying pressure distribution can be captured more accurately with the presented layout optimization approach. Conversely, a 39 %-55 % reduction in the number of sensors compared to cosine spacing is achievable without loss in lift prediction accuracy. Given these benefits, an optimized sensor layout improves the data quality, reduces unnecessary equipment and saves cost in experimental setups. While the optimization routine is demonstrated based on the generic example of the IEA 15 MW reference wind turbine, it is suitable for a wide range of applications requiring pressure measurements around airfoils.

More Details

Enabling "Fuel" Switching through On-Demand Wind Control

Brown, Kenneth A.; Cheung, Lawrence; Houck, Daniel R.; Develder, Nathaniel

This work demonstrates that classical shear-flow stability theory can be successfully applied to modify wind turbine wakes and also explains the success of several emerging, empirically-arrived control methods (i.e., dynamic induction and helix control). Linear stability theory predictions are extended to include the effects of non-axisymmetric inflow profiles, such as wind shear, which is shown to not strongly affect the primary forcing frequency. The predictions, as well as idealized large-eddy simulations using actuator-line representation of the turbine blades, agree that the n = 0 and ±1 modes have faster initial growth rates than higher-order modes, suggesting the lower-order modes are more appropriate for wake control. Exciting the lower-order modes with periodic pitching of the blades produces higher entrainment into the wake and consequently faster wake recovery.

More Details

Fluid-Dynamic Mechanisms Underlying Wind Turbine Wake Control with Strouhal-Timed Actuation

Energies

Cheung, Lawrence; Brown, Kenneth A.; Houck, Daniel R.; Develder, Nathaniel

A reduction in wake effects in large wind farms through wake-aware control has considerable potential to improve farm efficiency. This work examines the success of several emerging, empirically derived control methods that modify wind turbine wakes (i.e., the pulse method, helix method, and related methods) based on Strouhal numbers on the (Formula presented.). Drawing on previous work in the literature for jet and bluff-body flows, the analyses leverage the normal-mode representation of wake instabilities to characterize the large-scale wake meandering observed in actuated wakes. Idealized large-eddy simulations (LES) using an actuator-line representation of the turbine blades indicate that the (Formula presented.) and (Formula presented.) modes, which correspond to the pulse and helix forcing strategies, respectively, have faster initial growth rates than higher-order modes, suggesting these lower-order modes are more appropriate for wake control. Exciting these lower-order modes with periodic pitching of the blades produces increased modal growth, higher entrainment into the wake, and faster wake recovery. Modal energy gain and the entrainment rate both increase with streamwise distance from the rotor until the intermediate wake. This suggests that the wake meandering dynamics, which share close ties with the relatively well-characterized meandering dynamics in jet and bluff-body flows, are an essential component of the success of wind turbine wake control methods. A spatial linear stability analysis is also performed on the wake flows and yields insights on the modal evolution. In the context of the normal-mode representation of wake instabilities, these findings represent the first literature examining the characteristics of the wake meandering stemming from intentional Strouhal-timed wake actuation, and they help guide the ongoing work to understand the fluid-dynamic origins of the success of the pulse, helix, and related methods.

More Details

Wake interactions behind individual-tower multi-rotor wind turbine configurations

Journal of Physics: Conference Series

Brown, Kenneth A.; Cheung, Lawrence; Foulk, James W.; Maniaci, David C.; Hamilton, W.

Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.

More Details

Investigations of Farm-to-Farm Interactions and Blockage Effects from AWAKEN Using Large-Scale Numerical Simulations

Journal of Physics: Conference Series

Foulk, James W.; Blaylock, Myra L.; Herges, T.; Develder, Nathaniel; Brown, Kenneth A.; Sakievich, Philip; Houck, Daniel R.; Maniaci, David C.; Kaul, Collen; Rai, Raj; Hamilton, Nicholas; Rybchuk, Alex; Scott, Ryan; Thedin, Regis; Cheung, Lawrence

A large-scale numerical computation of five wind farms was performed as a part of the American WAKE experimeNt (AWAKEN). This high-fidelity computation used the ExaWind/AMR-Wind LES solver to simulate a 100 km × 100 km domain containing 541 turbines under unstable atmospheric conditions matching previous measurements. The turbines were represented by Joukowski and OpenFAST coupled actuator disk models. Results of this qualitative comparison illustrate the interactions of wind farms with large-scale ABL structures in the flow, as well as the extent of downstream wake penetration in the flow and blockage effects around wind farms.

More Details

Wake interactions behind individual-tower multi-rotor wind turbine configurations

Journal of Physics: Conference Series

Brown, Kenneth A.; Cheung, Lawrence; Foulk, James W.; Maniaci, David C.; Hamilton, W.

Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.

More Details

High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning

Atmospheric Measurement Techniques

Brown, Kenneth A.; Herges, T.

Wind turbine applications that leverage nacelle-mounted Doppler lidar are hampered by several sources of uncertainty in the lidar measurement, affecting both bias and random errors. Two problems encountered especially for nacelle-mounted lidar are solid interference due to intersection of the line of sight with solid objects behind, within, or in front of the measurement volume and spectral noise due primarily to limited photon capture. These two uncertainties, especially that due to solid interference, can be reduced with high-fidelity retrieval techniques (i.e., including both quality assurance/quality control and subsequent parameter estimation). Our work compares three such techniques, including conventional thresholding, advanced filtering, and a novel application of supervised machine learning with ensemble neural networks, based on their ability to reduce uncertainty introduced by the two observed nonideal spectral features while keeping data availability high. The approach leverages data from a field experiment involving a continuous-wave (CW) SpinnerLidar from the Technical University of Denmark (DTU) that provided scans of a wide range of flows both unwaked and waked by a field turbine. Independent measurements from an adjacent meteorological tower within the sampling volume permit experimental validation of the instantaneous velocity uncertainty remaining after retrieval that stems from solid interference and strong spectral noise, which is a validation that has not been performed previously. All three methods perform similarly for non-interfered returns, but the advanced filtering and machine learning techniques perform better when solid interference is present, which allows them to produce overall standard deviations of error between 0.2 and 0.3ms-1, or a 1%-22% improvement versus the conventional thresholding technique, over the rotor height for the unwaked cases. Between the two improved techniques, the advanced filtering produces 3.5% higher overall data availability, while the machine learning offers a faster runtime (i.e., 1/41s to evaluate) that is therefore more commensurate with the requirements of real-time turbine control. The retrieval techniques are described in terms of application to CW lidar, though they are also relevant to pulsed lidar. Previous work by the authors (Brown and Herges, 2020) explored a novel attempt to quantify uncertainty in the output of a high-fidelity lidar retrieval technique using simulated lidar returns; this article provides true uncertainty quantification versus independent measurement and does so for three techniques rather than one.

More Details

Accelerated Wind-Turbine Wake Recovery Through Actuation of the Tip-Vortex Instability

AIAA Journal

Brown, Kenneth A.; Houck, Daniel R.; Maniaci, David C.; Westergaard, Carsten H.; Kelley, Christopher L.

Advances in wind-plant control have often focused on more effectively balancing power between neighboring turbines. Wake steering is one such method that provides control-based improvements in a quasi-static way, but this does little to fundamentally change the wake recovery process, and thus, it has limited potential. This study investigates use of another control paradigm known as dynamic wake control (DWC) to excite the mutual inductance instability between adjacent tip-vortex structures, thereby accelerating the breakdown of the structures. The current work carries this approach beyond the hypothetical by applying the excitation via turbine control vectors that already exist on all modern wind turbines: blade pitch and rotor speed control. The investigation leverages a free-vortex wake method (FVWM) that allows a thorough exploration of relevant frequencies and amplitudes of harmonic forcing for each control vector (as well as the phase difference between the vectors for a tandem configuration) while still capturing the essential tip-vortex dynamics. The FVWM output feeds into a Fourier stability analysis working to pinpoint candidate DWC strategies suggesting fastest wake recovery. Near-wake length reductions of >80% are demonstrated, although without considering inflow turbulence. Analysis is provided to interpret these predictions considering the presence of turbulence in a real atmospheric inflow.

More Details

High-fidelity wind farm simulation methodology with experimental validation

Journal of Wind Engineering and Industrial Aerodynamics

Foulk, James W.; Brown, Kenneth A.; Develder, Nathaniel; Herges, T.; Knaus, Robert C.; Sakievich, Philip; Cheung, Lawrence; Houchens, Brent C.; Blaylock, Myra L.; Maniaci, David C.

The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.

More Details
Results 1–25 of 31
Results 1–25 of 31