Frontal polymerization involves the propagation of a thermally driven polymerization wave through a monomer solution to rapidly generate high-performance polymeric materials with little energy input. The balance between latent catalyst activation and sufficient reactivity to sustain a front can be difficult to achieve and often results in systems with poor storage lives. This is of particular concern for frontal ring-opening metathesis polymerization (FROMP) where gelation occurs within a single day of resin preparation due to the highly reactive nature of Grubbs-type catalysts. In this report we demonstrate the use of encapsulated catalysts to provide remarkable latency to frontal polymerization systems, specifically using the highly active dicyclopentadiene monomer system. Negligible differences were observed in the frontal velocities or thermomechanical properties of the resulting polymeric materials. FROMP systems with encapsulated catalyst particles are shown with storage lives exceeding 12 months and front rates that increase over a well-characterized 2 month period. Moreover, the modularity of this encapsulation method is demonstrated by encapsulating a platinum catalyst for the frontal polymerization of silicones by using hydrosilylation chemistry.
Experimental studies and ab initio quantum chemistry calculations were combined to investigate the process by which a Fenton reaction breaks down polystyrene sulfonate. The experimental results show that both molecular weight reduction and loss of aromaticity occur nearly simultaneously, a finding that is supported by the calculations. The results show that more than half of the material is broken down to low molecular weight compounds (< 500 g/mol) with two molar equivalents of H2O2 per styrene monomer. The calculations provide insights into the reaction pathways and indicate that at least two hydroxyl radicals are required to cleave backbone C–C bonds or to eliminate aromaticity. The calculations also show that, of the aromatic carbons, hydroxyl radical is most likely to add to the carbon bonded to sulfur. This finding explains the loss of hydrogen sulfite anion early in the process and also the efficient reduction of Fe(III) to Fe(II) through semiquinone formation. Taken together the experimental and computational results indicate that the reaction is very efficient and that very little H2O2 is lost to unproductive reactions. This high efficiency is attributed to the close association of Fe atoms with the sulfonate group such that hydroxyl radicals are generated near the polymer chains.