Publications

Results 1–25 of 73

Search results

Jump to search filters

Aeroelastic Validation of the Sandia Offshore Wind Energy Simulator (OWENS) for Vertical-Axis Wind Turbines

Moore, Kevin R.; Ennis, Brandon L.

Vertical-axis wind turbines (VAWTs) have been the subject of research and development for nearly a century. However, this turbine architecture has fallen in and out of favor on multiple occasions. Beginning in the late 1970s, the U.S. Department of Energy sponsored an extensive experimental program through Sandia National Laboratories which produced a mass of experimental data from several highly instrumented turbines. Turbines designed, built, and tested include the 2 meter, 5 meter, 17 meter, and 34 meter and their respective configurations. This program kicked off a commercial collaboration and resulted in the FloWind turbines. The FloWind turbines had several notable design changes from the experimental turbines that, in conjunction with a general lack of understanding regarding predicting fatigue at the time, led to the majority of the turbines failing prematurely during the late 80s.

More Details

Conceptual Design of a Tension Leg Platform With 22.3 MW Vertical Axis Turbine

ASME 2023 5th International Offshore Wind Technical Conference

Ennis, Brandon L.; Moore, Kevin R.; Huang, Edward; Chen, Xiaohong; Yu, Qing; R, Arulmary

Here, this paper presents the conceptual design of a tension leg platform (TLP) for the ARCUS “towerless” vertical-axis wind turbine (VAWT). VAWTs are ideal for floating offshore sites and have several advantages over horizontal-axis wind turbines (HAWT) including reduced top mass, lower center of gravity, increased energy capture, and in turn lower cost. The towerless ARCUS VAWT drives these advantages further through increased structural efficiency and by enabling more optimized TLP designs with simplified installation procedures. For hull sizing, we have studied three turbine sizes with corresponding power ratings of 5.1 MW, 10.4 MW and 22.3 MW. The largest turbine was identified as having the greatest potential to reduce the levelized cost of energy (LCOE) and is the reference size used for the further detailed design process. The conceptual design of the VAWT TLP has been awarded with an ABS Approval in Principle Certificate. This paper contains brief analysis results and design findings for a TLP designed to house a VAWT, including the following topics: • Applicable Design Codes • Metocean Conditions • ARCUS Turbine Loads • Design Load Cases and Requirements - Pre-service TLP Stability - In-place TLP Global Performance • Platform Configurations, Hull Structure Scantling Design, Weight and CG Estimation, and General Arrangement Drawings • Hull Ballast Plan for both Pre-service and In-place Conditions • Pre-service Quayside Integration, Transportation and Wet Tow Stability Analysis • Global Performance Analysis for Motions and Tendon tensions • Summary of cost components and system levelized cost of energy

More Details

Optimized Carbon Fiber Composites in Wind Turbine Blade Design: Follow-On Studies

Ennis, Brandon L.; Clarke, Ryan J.; Paquette, Joshua A.; Norris, Robert E.; Das, Sujit; Miller, David A.; Samborsky, Daniel D.

This project has identified opportunities to bring further reductions in the mass and cost of modern wind turbine blades through the use of alternative material systems and manufacturing processes. The fiber reinforced polymer material systems currently used by the wind industry have stagnated as the technology continues to mature and as a means to reduce risk while introducing new products with continually increasing blade lengths. However, as blade lengths continue to increase, the challenge of controlling blade mass becomes even more critical to enabling the associated levelized cost of energy reductions. Stiffer and stronger reinforcement fibers can help to resolve the challenges of meeting the loading demands while limiting the increase in weight, but these materials are substantially more expensive than the traditional E-glass fiber systems. One goal of this project and associated work is to identify pathways that improve the cost-effectiveness of carbon fiber such that it is the reinforcement of choice in the primary structural elements of wind blades. The use of heavy-tow textile carbon fiber material systems has been shown to reduce the blade mass by 30-31% when used in the spar cap and by up to 7% when used in edgewise reinforcement. A pultrusion cost model was developed to enable a material cost comparison that includes an accurate estimate of the intermediate manufacturing step of pultrusion for the carbon fiber composite. Material cost reductions were revealed in most cases for the heavy-tow textile carbon fiber compared to infused fiberglass. The use of carbon fiber in the edgewise reinforcement produced the most notable material cost reduction of 33% for the heavy-tow textile carbon fiber. The mass and cost savings observed when using carbon fiber in edgewise reinforcement demonstrate a clear opportunity of this design approach. A carbon fiber conversion cost model was expanded to include a characterization of manufacturing costs when using advanced conversion processes with atmospheric plasma oxidation. This manufacturing approach was estimated to reduce the cost of carbon fiber material systems by greater than 10% and can be used with textile carbon systems or traditional carbon fiber precursors. The pultrusion cost model was also used to assess the opportunity for using pultruded fiberglass in wind blades, studying conventional E-glass fiber reinforcement. When using pultruded fiberglass as the spar cap material for two design classifications, the blade weight was reduced by 6% and 9% compared to infused fiberglass. However, due to the relatively large share of the pultrusion manufacturing cost compared to fiber cost, the spar cap material cost increased by 12% and 7%. When considering the system benefits of reduced blade mass and potentially lower blade manufacturing costs for pultruded composites, there may be opportunity for pultruded E-glass in wind blade spar caps, but further studies are needed. There is a clearer outcome for using pultruded fiberglass in the edgewise reinforcement where it resulted in a blade mass reduction of 2% and associated reinforcement material cost reduction of 1% compared to infused E-glass. The use of higher performing glass fibers, such as S-glass and H-glass systems, will produce greater mass savings but a study is needed to assess the cost implications for these more expensive systems. The most likely opportunity for these high-performance glass fibers is in the edgewise reinforcement, where the increased strength will reduce the damage accumulation of this fatigue-driven component. The blade design assessments in this project characterize the controlling material properties for the primary structural components in the flapwise and edgewise directions for modern wind blades. The observed trends with low and high wind speed turbine classifications for carbon and glass fiber reinforced polymer systems help to identify where cost reductions are needed, and where improvements in mechanical properties would help to reduce the material demands.

More Details

Compressive strength improvements from noncircular carbon fibers: A numerical study

Composites Science and Technology

Camarena, Ernesto; Clarke, Ryan J.; Ennis, Brandon L.

The benefits of high-performance unidirectional carbon fiber composites are limited in many cost-driven industries due to the high cost relative to alternative reinforcement fibers. Low-cost carbon fibers have been previously proposed, but the longitudinal compressive strength continues to be a limiting factor or studies are based on simplifications that warrant further analysis. A micromechanical model is used to (1) determine if the longitudinal compressive strength of composites can be improved with noncircular carbon fiber shapes and (2) characterize why some shapes are stronger than others in compression. In comparison to circular fibers, the results suggest that the strength can be increased by 10%–13% by using a specific six-lobe fiber shape and by 6%–9% for a three-lobe fiber shape. A slight increase is predicted in the compressive strength of the study two-lobe fiber but has the highest uncertainty and sensitivity to fiber orientation and misalignment direction. The underlying mechanism governing the compressive failure of the composites was linked to the unique stress fields created by the lobes, particularly the pressure stress in the matrix. This work provides mechanics-based evidence of strength improvements from noncircular fiber shapes and insight on how matrix yielding is altered with alternative fiber shapes.

More Details

Thrust-optimized blade design for wind turbines

Ennis, Brandon L.

A wind rotor is disclosed that produces energy optimally for a given thrust overturning moment. By designing rotors with suboptimal aerodynamic efficiency, they can have optimal thrust performance, which will reduce the substructure cost and/or enable greater energy capture for a given substructure.

More Details

Economic competitiveness of pultruded fiber composites for wind turbine applications

Composites. Part B, Engineering

Ennis, Brandon L.; Norris Jr., Robert E.; Das, Sujit

Pultrusion manufacturing of fiber reinforced polymers has been shown to yield some of the highest mechanical properties for unidirectional composites, having a high degree of fiber alignment with consistent performance. Pultrusions offer a low-cost manufacturing approach for producing unidirectional composites with a constant cross-section and are used in many applications, including spar caps of wind turbine blades. However, as an intermediate processing step for wind blades, the additional cost of manufacturing pultrusions must be accompanied by sufficient increases in mechanical performance and system benefits. Wind turbine blades are manufactured using vacuum-assisted resin transfer molding with infused unidirectional fiberglass or carbon pultrusions for the spar cap. Infused fiberglass composites are among the most cost-effective structural materials available and replacing this material in the cost-driven wind industry has proven challenging, where infused fiberglass spar caps are still the predominant material system in use. To evaluate alternative material systems in a pultruded composite form, it is necessary to understand the costs for this additional manufacturing step which are shown to add 33%–55% on top of the material costs. A pultrusion cost model has been developed and used to quantify cost sensitivities to various processing parameters. The mechanical performance for pultruded composites is improved versus resin-infusion manufacturing with a 17% increase in design strength at a constant fiber volume fraction, but also enables higher achievable fiber volume fractions. The cost-specific mechanical performance is compared as a function of processing parameters for pultruded composites to identify the opportunities for alternative material and manufacturing approaches for wind turbine spar caps. Finally, four materials are compared in a representative wind turbine blade model to assess the performance of pultruded carbon fiber systems and pultruded fiberglass relative to infused fiberglass, where the pultruded systems produce lower weight blades with various cost distinctions.

More Details

Enabling Floating Offshore VAWT Design by Coupling OWENS and OpenFAST

Energies

Moore, Kevin R.; Ennis, Brandon L.; Jonkman, Jason; Mendoza, Nicole R.; Platt, Andrew; Devin, Michael C.

Vertical-axis wind turbines (VAWTs) have a long history, with a wide variety of turbine archetypes that have been designed and tested since the 1970s. While few utility-scale VAWTs currently exist, the placement of the generator near the turbine base could make VAWTs advantageous over tradition horizontal-axis wind turbines for floating offshore wind applications via reduced platform costs and improved scaling potential. However, there are currently few numerical design and analysis tools available for VAWTs. One existing engineering toolset for aero-hydro-servo-elastic simulation of VAWTs is the Offshore Wind ENergy Simulator (OWENS), but its current modeling capability for floating systems is non-standard and not ideal. This article describes how OWENS has been coupled to several OpenFAST modules to update and improve modeling of floating offshore VAWTs and discusses the verification of these new capabilities and features. The results of the coupled OWENS verification test agree well with a parallel OpenFAST simulation, validating the new modeling and simulation capabilities in OWENS for floating VAWT applications. These developments will enable the design and optimization of floating offshore VAWTs in the future.

More Details

Identification of the optimal carbon fiber shape for cost-specific compressive performance

Materials Today Communications

Ennis, Brandon L.; Perez, Hector S.; Norris, Robert E.

Carbon fiber composites offer superior mechanical performance compared to nearly all other useful materials for the design of structures. However, for cost-driven industries, such as with the wind energy and vehicle industries, the cost of commercial carbon fiber materials is often prohibitive for their usage compared to alternatives. This paper develops an approach to optimize fiber geometries for use in carbon fiber reinforced polymers to increase the compressive strength per unit cost. Compressive strength is a composite property that depends on the fiber, matrix, and interface, and an exact analytic expression does not exist that can accurately represent these complicated relationships. The approach taken instead is to use a weighted summation between the fiber cross-sectional area moment of inertia and perimeter as a proxy for compressive strength, with different weightings explored within the paper. Analyses are performed to identify optimal fiber geometries that increase the cost-specific compressive strength based on various assumptions and desired fiber volume fraction. Robust optimal shapes are identified which outperform circular fibers due to increases in area moment of inertia and perimeter, as well as decreases in carbon fiber processing costs.

More Details

Vertical-Axis Wind Turbine Steady and Unsteady Aerodynamics for Curved Deforming Blades

AIAA Journal

Moore, Kevin R.; Ennis, Brandon L.

Vertical-axis wind turbines’ simpler design and low center of gravity make them ideal for floating wind applications. However, efficient design optimization of floating systems requires fast and accurate models. Low-fidelity vertical-axis turbine aerodynamic models, including double multiple streamtube and actuator cylinder theory, were created during the 1980s. Commercial development of vertical-axis turbines all but ceased in the 1990s until around 2010 when interest resurged for floating applications. Despite the age of these models, the original assumptions (2-D, rigid, steady, straight bladed) have not been revisited in full. When the current low-fidelity formulations are applied to modern turbines in the unsteady domain, aerodynamic load errors nearing 50% are found, consistent with prior literature. However, a set of steady and unsteady modifications that remove the majority of error is identified, limiting it near 5%. This paper shows how to reformulate the steady models to allow for unsteady inputs including turbulence, deforming blades, and variable rotational speed. A new unsteady approximation that increases numerical speed by 5–10× is also presented. Combined, these modifications enable full-turbine unsteady simulations with accuracy comparable to higher-fidelity vortex methods, but over 5000× faster.

More Details

Big Adaptive Rotor Phase I Final Report

Johnson, Nick; Paquette, Joshua A.; Bortolotti, Pietro; Bolinger, Mark; Camarena, Ernesto; Anderson, Evan M.; Ennis, Brandon L.

The Big Adaptive Rotor (BAR) project was initiated by the U.S. Department of Energy (DOE) in 2018 with the goal of identifying novel technologies that can enable large (>100 meter [m]) blades for low-specific-power wind turbines. Five distinct tasks were completed to achieve this goal: 1. Assessed the trends, impacts, and value of low-specific-power wind turbines; 2. Developed a wind turbine blade cost-reduction road map study; 3. Completed research-and-development opportunity screening; 4. Performed detailed design and analysis; and, 5. Assessed low-cost carbon fiber. These tasks were completed by the national laboratory team consisting of Sandia National Laboratories (Sandia), the National Renewable Energy Laboratory (NREL), and Lawrence Berkeley National Laboratory.

More Details

Development of a compressive failure model for carbon fiber composites and associated uncertainties

Composites Science and Technology

Camarena, Ernesto; Clarke, Ryan J.; Ennis, Brandon L.

An approach to increase the value of carbon fiber for wind turbines blades, and other compressive strength driven designs, is to identify pathways to increase its cost-specific compressive strength. A finite element model has been developed to evaluate the predictiveness of current finite element methods and to lay groundwork for future studies that focus on improving the cost-specific compressive strength. Parametric studies are conducted to understand which uncertainties in the model inputs have the greatest impact on compressive strength predictions. A statistical approach is also presented that enables the micromechanical model, which is deterministic, to efficiently account for statistical variability in the fiber misalignment present in composite materials; especially if the results from the hexagonal and square pack models are averaged. The model was found to agree well with experimental results for a Zoltek PX-35 pultrusion. The sensitivity studies suggest that the fiber packing and the interface shear strength have the greatest impact on compressive strength prediction for the fiber reinforced polymer studied here. Based on the performance of the modeling approach presented in this work, it is deemed sufficient for future work which will seek to identify carbon fiber composites with improved cost-specific compressive strength.

More Details

Vertical-axis wind turbine steady and unsteady aerodynamics for curved deforming blades

AIAA Scitech 2021 Forum

Moore, Kevin R.; Ennis, Brandon L.

With interest resurging in vertical-axis wind turbines, there is a need for a fast and accurate vertical-axis turbine aerodynamics model. Although 3-D vortex methods are faster than 3-D computational fluid dynamics, they are orders of magnitude slower than required for design optimization. Lower fidelity models like actuator cylinder and double multiple streamtube are popular choices. However, both original formulations assume a steady-state infinite cylinder of unchanging radius, uncharacteristic of offshore turbines. Although stacks of cylinders can be used to approximate curved blades, this yields errors in excess of 50% and does not capture active deformation. Despite current consensus that these are errors inherent to the 2-D formulation, we show the error can nearly all be resolved by including considerations for curved blades. Unsteady effects have historically been captured using a first-order filter on the steady-state induced velocities. Although active deformation can be captured with proper discretization, the unsteady model requires a full revolution solution at each timestep. We found that with a rotating point iterative approach, only solutions at the blade positions are required, which gives a 5-10x speedup. These modifications together enable full-turbine unsteady simulations with accuracy comparable to vortex methods, but as much as 5000x faster.

More Details
Results 1–25 of 73
Results 1–25 of 73