Publications

Results 1–25 of 66

Search results

Jump to search filters

Two Circuits for Directing and Controlling Ballistic Fluxons

IEEE Transactions on Applied Superconductivity

Lewis, Rupert; Frank, Michael P.

Reversible logic schemes using flux solitons (fluxons) on long Josephson junctions (LJJs) have recently been proposed. The attraction of the fluxon is that it propagates ballistically along an LJJ until it encounters a change in the character of the LJJ, often a designed circuit element. Logic gates involve fluxons interacting with circuit elements and with other fluxons. However, testing of ballistic fluxon circuits requires other circuits outside the logic family to direct and control fluxon motion. We discuss two such non-reversible fluxon control circuits. First, the polarity filter gate is a simple non-reversible gate that allows one polarity of fluxon to pass, while reflecting the other polarity. In the off state both polarities reflect. Second, the polarity separator generalizes on the polarity filter concept and allows separation of the two fluxon polarities into different LJJs. We discuss simulations of these structures and possible applications.

More Details

High kinetic inductance NbTiN superconducting transmission line resonators in the very thin film limit

Applied Physics Letters

Bretz-Sullivan, Terence M.; Lewis, Rupert; Lima-Sharma, Ana L.; Lidsky, David A.; Smyth, Christopher M.; Harris, Charles T.; Venuti, Michael; Eley, Serena; Lu, Tzu-Ming L.

We examine the DC and radio frequency (RF) response of superconducting transmission line resonators comprised of very thin NbTiN films, < 12 nm in thickness, in the high-temperature limit, where the photon energy is less than the thermal energy. The resonant frequencies of these superconducting resonators show a significant nonlinear response as a function of RF input power, which can approach a frequency shift of Δ f = - 0.15 % in a - 20 dB span in the thinnest film. The strong nonlinear response allows these very thin film resonators to serve as high kinetic inductance parametric amplifiers.

More Details

Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Frank, Michael P.; Lewis, Rupert

In recent years we have been exploring a novel asynchronous, ballistic physical model of reversible computing, variously termed ABRC (Asynchronous Ballistic Reversible Computing) or BARC (Ballistic Asynchronous Reversible Computing). In this model, localized information-bearing pulses propagate bidi-rectionally along nonbranching interconnects between I/O ports of stateful circuit elements, which carry out reversible transformations of the local digital state. The model appears suitable for implementation in superconducting circuits, using the naturally quantized configuration of magnetic flux in the circuit to encode digital information. One of the early research thrusts in this effort involves the enumeration and classification, at an abstract theoretical level, of the distinct possible reversible digital functional behaviors that primitive BARC circuit elements may exhibit, given the applicable conservation and symmetry constraints in superconducting implementations. In this paper, we describe the motivations for this work, outline our research methodology, and summarize some of the noteworthy preliminary results to date from our theoretical study of BARC elements for bipolarized pulses, and having up to three I/O ports and two internal digital states.

More Details

Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Frank, Michael P.; Lewis, Rupert

In recent years we have been exploring a novel asynchronous, ballistic physical model of reversible computing, variously termed ABRC (Asynchronous Ballistic Reversible Computing) or BARC (Ballistic Asynchronous Reversible Computing). In this model, localized information-bearing pulses propagate bidi-rectionally along nonbranching interconnects between I/O ports of stateful circuit elements, which carry out reversible transformations of the local digital state. The model appears suitable for implementation in superconducting circuits, using the naturally quantized configuration of magnetic flux in the circuit to encode digital information. One of the early research thrusts in this effort involves the enumeration and classification, at an abstract theoretical level, of the distinct possible reversible digital functional behaviors that primitive BARC circuit elements may exhibit, given the applicable conservation and symmetry constraints in superconducting implementations. In this paper, we describe the motivations for this work, outline our research methodology, and summarize some of the noteworthy preliminary results to date from our theoretical study of BARC elements for bipolarized pulses, and having up to three I/O ports and two internal digital states.

More Details

Leveraging Spin-Orbit Coupling in Ge/SiGe Heterostructures for Quantum Information Transfer

Bretz-Sullivan, Terence M.; Brickson, Mitchell I.; Foster, Natalie D.; Hutchins-Delgado, Troy A.; Lewis, Rupert; Lu, Tzu-Ming L.; Miller, Andrew J.; Srinivasa, Vanita; Tracy, Lisa A.; Wanke, Michael W.; Luhman, Dwight R.

Hole spin qubits confined to lithographically - defined lateral quantum dots in Ge/SiGe heterostructures show great promise. On reason for this is the intrinsic spin - orbit coupling that allows all - electric control of the qubit. That same feature can be exploited as a coupling mechanism to coherently link spin qubits to a photon field in a superconducting resonator, which could, in principle, be used as a quantum bus to distribute quantum information. The work reported here advances the knowledge and technology required for such a demonstration. We discuss the device fabrication and characterization of different quantum dot designs and the demonstration of single hole occupation in multiple devices. Superconductor resonators fabricated using an outside vendor were found to have adequate performance and a path toward flip-chip integration with quantum devices is discussed. The results of an optical study exploring aspects of using implanted Ga as quantum memory in a Ge system are presented.

More Details

A Fast-Cycle Charge Noise Measurement for Better Qubits

Lewis, Rupert; Kindel, William K.; Harris, Charles T.; Skinner Ramos, Sueli D.

Defects in materials are an ongoing challenge for quantum bits, so called qubits. Solid state qubits—both spins in semiconductors and superconducting qubits—suffer from losses and noise caused by two-level-system (TLS) defects thought to reside on surfaces and in amorphous materials. Understanding and reducing the number of such defects is an ongoing challenge to the field. Superconducting resonators couple to TLS defects and provide a handle that can be used to better understand TLS. We develop noise measurements of superconducting resonators at very low temperatures (20 mK) compared to the resonant frequency, and low powers, down to single photon occupation.

More Details

Superconducting metamaterials - the first step toward a microwave quantum bus

Lu, Tzu-Ming L.; Bretz-Sullivan, Terence M.; Lima-Sharma, Ana L.; Sharma, Peter A.; Lidsky, David A.; Lewis, Rupert; Harris, Charles T.

Coherent manipulation of quantum states is at the core of quantum information science (QIS). Many state-of-the-art quantum systems rely on microwave fields for quantum operations. As such, the microwave electromagnetic fields serve as the ideal "quantum bus" to integrate different types of QIS systems into a hybrid quantum system. Superconducting metamaterials are artificial materials consisting of arrays of superconducting resonant microstructures with sizes much smaller than the microwave wavelengths of interest. Superconducting metamaterials are a strong candidate medium for the microwave quantum bus, because the effective impedance, field distributions, and frequency response can all be controlled by engineering the microstructures, electrical bias, and magnetic flux while maintaining extremely low loss. In this project, we investigate the fundamental unit of a superconducting metamaterial - a resonator with physical dimensions much smaller than the microwave wavelengths - using NbTiN as the working superconductor, whose high operating temperatures and magnetic fields are desirable attributes for compatibility with a wide variety of quantum systems. We first studied the properties of sputtered NbTiN thin films by correlating the film thickness with the normal state resistivity, superconducting transition temperature, and resonances of transmission line resonators made from these films. We developed a process flow and designed a coplanar waveguide platform for studying small resonators. The platform significantly shortens the turnaround times of the resonator fabrication and testing cycles. Several resonators with different designs were fabricated and tested at 4 Kelvin. Resonances were observed in some resonator testers. Potential paths for improvements and future directions are discussed.

More Details

Asynchronous Ballistic Reversible Computing using Superconducting elements

Lewis, Rupert; Missert, Nancy A.; Henry, Michael D.; Frank, Michael P.

Computing uses energy. At the bare minimum, erasing information in a computer increases the entropy. Landauer has calculated %7E kBT log(2) Joules is dissipated per bit of energy erased. While the success of Moores law has allowed increasing computing power and efficiency for many years, these improvements are coming to an end. This project asks if there is a way to continue those gains by circumventing Landauer through reversible computing. We explore a new reversible computing paradigm, asynchronous ballistic reversible computing or ABRC. The ballistic nature of data in ABRC matches well with superconductivity which provides a low-loss environment and a quantized bit encoding the fluxon. We discuss both these and our development of a superconducting fabrication process at Sandia. We describe a fully reversible 1-bit memory cell based on fluxon dynamics. Building on this model, we propose several other gates which may also offer reversible operation.

More Details

Noise Erasure in Quantum-Limited Current Amplifiers

Harris, Charles T.; Lu, Tzu-Ming L.; Bethke, Donald T.; Lewis, Rupert; Skinner Ramos, Sueli D.

Superconducting quantum interference devices (SQUIDs) are extraordinarily sensitive to magnetic flux and thus make excellent current amplifiers for cryogenic applications. One such application of high interest to Sandia is the set-up and state read-out of quantum dot based qubits, where a qubit state is read out from a short current pulse (microseconds to milliseconds long) of approximately 100 pA, a signal that is easily corrupted by noise in the environment. A Parametric SQUID Amplifier can be high bandwidth (in the GHz range), low power dissipation (less than 1pW), and can be easily incorporated into multi-qubit systems. In this SAIL LDRD, we will characterize the noise performance of the parametric amplifier front end -- the SQUID -- in an architecture specific to current readout for spin qubits. Noise is a key metric in amplification, and identifying noise sources will allow us to optimize the system to reduce its effects, resulting in higher fidelity readout. This effort represents a critical step in creating the building blocks of a high speed, low power, parametric SQUID current amplifier that will be needed in the near term as quantum systems with many qubits begin to come on line in the next few years.

More Details
Results 1–25 of 66
Results 1–25 of 66