Publications

Results 1–25 of 91

Search results

Jump to search filters

Energetics of water expulsion from intervening space between two particles during aggregation

Journal of Colloid and Interface Science

Ho, Tuan A.; Senanayake, Hasini S.

Solvent expulsion away from an intervening region between two approaching particles plays important roles in particle aggregation yet remains poorly understood. In this work, we use metadynamics molecular simulations to study the free energy landscape of removing water molecules from gibbsite and pyrophyllite slit pores representing the confined spaces between two approaching particles. For gibbsite, removing water from the intervening region is both entropically and enthalpically unfavorable. The closer the particles approach each other, the harder it is to expel water molecules. For pyrophyllite, water expulsion is spontaneous, which is different from the gibbsite system. A smaller pore makes the water removal more favorable. When water is being drained from the intervening region, single chains of water molecules are observed in gibbsite pore, while in pyrophyllite pore water cluster is usually observed. Water-gibbsite hydrogen bonds help stabilize water chains, while water forms clusters in pyrophyllite pore to maximize the number of hydrogen bonds among themselves. This work provides the first assessment into the energetics and structure of water being drained from the intervening region between two approaching particles during oriented attachment and aggregation.

More Details

Capturing CO2 in Quadrupolar Binding Pockets: Broadband Microwave Spectroscopy of Pyrimidine-(CO2)n, n = 1,2

Journal of Physical Chemistry A

Zwier, Timothy S.; Welsh, Blair; Urbina, Andres S.; Ho, Tuan A.; Rempe, Susan R.; Slipchenko, Lyudmila V.

Pyrimidine has two in-plane CH(δ+)/N̈(δ−)/CH(δ+) binding sites that are complementary to the (δ−/2δ+/δ−) quadrupole moment of CO2. We recorded broadband microwave spectra over the 7.5-17.5 GHz range for pyrimidine-(CO2)n with n = 1 and 2 formed in a supersonic expansion. Based on fits of the rotational transitions, including nuclear hyperfine splitting due to the two 14N nuclei, we have assigned 313 hyperfine components across 105 rotational transitions for the n = 1 complex and 208 hyperfine components across 105 rotational transitions for the n = 2 complex. The pyrimidine-CO2 complex is planar, with CO2 occupying one of the quadrupolar binding sites, forming a structure in which the CO2 is stabilized in the plane by interactions with the C-H hydrogens adjacent to the nitrogen atom. This structure is closely analogous to that of the pyridine-CO2 complex studied previously by ( Doran, J. L. J. Mol. Struct. 2012, 1019, 191-195 ). The fit to the n = 2 cluster gives rotational constants consistent with a planar cluster of C2v symmetry in which the second CO2 molecule binds in the second quadrupolar binding pocket on the opposite side of the ring. The calculated total binding energy in pyrimidine-CO2 is −13.7 kJ mol-1, including corrections for basis set superposition error and zero-point energy, at the CCSD(T)/ 6-311++G(3df,2p) level, while that in pyrimidine-(CO2)2 is almost exactly double that size, indicating little interaction between the two CO2 molecules in the two binding sites. The enthalpy, entropy, and free energy of binding are also calculated at 300 K within the harmonic oscillator/rigid-rotor model. This model is shown to lack quantitative accuracy when it is applied to the formation of weakly bound complexes.

More Details

Confinement-induced clustering of H2 and CO2 gas molecules in hydrated nanopores

Physical Chemistry Chemical Physics

Choudhary, Aditya; Ho, Tuan A.

Gas molecule clustering within nanopores holds significance in the fields of nanofluidics, biology, gas adsorption/desorption, and geological gas storage. However, the intricate roles of nanoconfinement and surface chemistry that govern the formation of gas clusters remain inadequately explored. In this study, through free energy calculation in molecular simulations, we systematically compared the tendencies of H2 and CO2 molecules to aggregate within hydrated hydrophobic pyrophyllite and hydrophilic gibbsite nanopores. The results indicate that nanoconfinement enhances gas dimer formation in the nanopores, irrespective of surface chemistry. However, surface hydrophilicity prohibits the formation of gas clusters larger than dimers, while large gas clusters form easily in hydrophobic nanopores. Despite H2 and CO2 both being non-polar, the larger quadrupole moment of CO2 leads to a stronger preference for dimer/cluster formation compared to H2. Our results also indicate that gases prefer to enter the nanopores as individual molecules, but exit the nanopores as dimers/clusters. This investigation provides a mechanistic understanding of gas cluster formation within nanopores, which is relevant to various applications, including geological gas storage.

More Details

Nuclear magnetic resonance and molecular simulation study of H2 and CH4 adsorption onto shale and sandstone for hydrogen geological storage

International Journal of Hydrogen Energy

Ho, Tuan A.; Dasgupta, Nabankur; Choudhary, Aditya; Wang, Yifeng

Understanding pure H2 and H2/CH4 adsorption and diffusion in earth materials is one vital step toward a successful and safe H2 storage in depleted gas reservoirs. Despite recent research efforts such understanding is far from complete. In this work we first use Nuclear Magnetic Resonance (NMR) experiments to study the NMR response of injected H2 into Duvernay shale and Berea sandstone samples, representing materials in confining and storage zones. Then we use molecular simulations to investigate H2/CH4 competitive adsorption and diffusion in kerogen, a common component of shale. Our results indicate that in shale there are two H2 populations, i.e., free H2 and adsorbed H2, that yield very distinct NMR responses. However, only free gas presents in sandstone that yields a H2 NMR response similar to that of bulk H2. About 10 % of injected H2 can be lost due to adsorption/desorption hysteresis in shale, and no H2 loss (no hysteresis) is observed in sandstone. Our molecular simulation results support our NMR results that there are two H2 populations in nanoporous materials (kerogen). The simulation results also indicate that CH4 outcompetes H2 in adsorption onto kerogen, due to stronger CH4-kerogen interactions than H2-kerogen interactions. Nevertheless, in a depleted gas reservoir with low CH4 gas pressure, about ∼30 % of residual CH4 can be desorbed upon H2 injection. The simulation results also predict that H2 diffusion in porous kerogen is about one order of magnitude higher than that of CH4 and CO2. This work provides an understanding of H2/CH4 behaviors in deleted gas reservoirs upon H2 injection and predictions of H2 loss and CH4 desorption in H2 storage.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies

Jove Colon, Carlos F.; Ho, Tuan A.; Lopez, Carlos M.; Rutqvist, Jonny; Guglielmi, Yves; Hu, Mengsu; Sasaki, Tsubasa; Yoon, Sangcheol; Steefel, Carl I.; Tournassat, Christophe; Mital, Utkarsh; Luu, Keurfon; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zandanel, Amber E.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Han, Sol-Chan; Wainwright, Haruko; Greathouse, Jeffery A.

This report represents the milestone deliverable M2SF-23SN010301072 “Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies” The report provides a status update of FY23 activities for the work package Argillite Disposal work packages for the DOE-NE Spent Fuel Waste Form Science and Technology (SFWST) Program. Clay-rich geological media (often referred as shale or argillite) are among the most abundant type of sedimentary rock near the Earth’s surface. Argillaceous rock formations have the following advantageous attributes for deep geological nuclear waste disposal: widespread geologic occurrence, found in stable geologic settings, low permeability, self-sealing properties, low effective diffusion coefficient, high sorption capacity, and have the appropriate depth and thickness to host nuclear waste repository concepts. The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress (through experiment, modeling, and testing) in the study of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in clay/shale/argillaceous rock. International collaboration activities comprising field-scale heater tests, field data monitoring, and laboratory-scale experiments provide key information on changes to the engineered barrier system (EBS) material exposed high thermal loads. Moreover, consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the engineered barrier system (EBS) design concepts. Chemical and structural analyses of sampled bentonite material from laboratory tests at elevated temperatures are key to the characterization of thermal effects affecting bentonite clay barrier performance. The knowledge provided by these experiments is crucial to constrain the extent of sacrificial zones in the EBS design during the thermal period. Thermal, hydrologic, mechanical, and chemical (THMC) data collected from heater tests and laboratory experiments have been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches to assess issues on coupled processes involving porous media flow, transport, geomechanical phenomena, chemical interactions with barrier/geologic materials, and the development of EBS concepts. These lines of knowledge are central to the design of deep geological backfilled repository concepts where temperature plays a key role in the EBS behavior, potential interactions with host rock, and long-term performance in the safety assessment.

More Details

Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles

Chemical Reviews

Ho, Tuan A.; Fan, Hongyou F.

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.

More Details

Low hydrogen solubility in clay interlayers limits gas loss in hydrogen geological storage

Sustainable Energy and Fuels

Ho, Tuan A.; Jove Colon, Carlos F.; Wang, Yifeng

Gas intercalation into clay interlayers may result in hydrogen loss in the geological storage of hydrogen; a phenomenon that has not been fully understood and quantified. Here we use metadynamics molecular simulations to calculate the free energy landscape of H2 intercalation into montmorillonite interlayers and the H2 solubility in the confined water; in comparison with results obtained for CO2. The results indicate that H2 intercalation into hydrated interlayers is thermodynamically unfavorable while CO2 intercalation can be favorable. H2 solubility in hydrated clay interlayers is in the same order of magnitude as that in bulk water and therefore no over-solubility effect due to nanoconfinement is observed - in striking contrast with CO2. These results indicate that H2 loss and leakage through hydrated interlayers due to intercalation in a subsurface storage system, if any, is limited.

More Details

Roles of Hydrogen Bonds and Alignment in Oriented Attachment of Gibbsite Nanoparticles: Insights from Molecular Dynamics

Journal of Physical Chemistry C

Ho, Tuan A.

Oriented attachment (OA) of nanoparticles is an important crystal growth pathway in the synthesis of hierarchical structures. Although a significant understanding of OA has been made, the effect of atomistic misalignment and the roles of solvent/particle and particle/particle interactions on the structure-energy relationship during an OA remain elusive. In this study, we perform molecular dynamics simulations to calculate the potential of mean force (PMF) profile for gibbsite particle translation on a gibbsite slab with 1 or 2 intervening water layers (1W or 2W). The structures of the gibbsite surfaces and the confined water are analyzed to determine how the number and type of hydrogen bonds (H-bonds) influence the free energy profile during the translation. The PMF profile exhibits a periodicity of length 5.078 Å, consistent with the gibbsite unit cell size along the translation direction. The changes in the surface-water and water-water hydrogen bond network and water and surface OH groups’ orientations during the translation are strongly coupled with the changes in the PMF profile in the 1W case. However, when increasing the number of intervening water layers from 1W to 2W, the particle/slab misalignment becomes a dominant factor controlling the behavior of the PMF profile. We also establish a method to quantify misalignment between the particle and the slab, which exhibits a strong correlation with the free energy for the 2W case. These results shed more light into the roles of particle/slab misalignment and hydrogen bond network in the OA of mineral particles in aqueous solution.

More Details

Control of the Structural Charge Distribution and Hydration State upon Intercalation of CO2 into Expansive Clay Interlayers

Journal of Physical Chemistry Letters

Ho, Tuan A.; Wang, Yifeng; Rempe, Susan R.; Dasgupta, Nabankur; Xu, Guangping X.; Zwier, Timothy S.; Mills, Melissa M.

Numerous experimental investigations indicated that expansive clays such as montmorillonite can intercalate CO2 preferentially into their interlayers and therefore potentially act as a material for CO2 separation, capture, and storage. However, an understanding of the energy-structure relationship during the intercalation of CO2 into clay interlayers remains elusive. Here, we use metadynamics molecular dynamics simulations to elucidate the energy landscape associated with CO2 intercalation. Our free energy calculations indicate that CO2 favorably partitions into nanoconfined water in clay interlayers from a gas phase, leading to an increase in the CO2/H2O ratio in clay interlayers as compared to that in bulk water. CO2 molecules prefer to be located at the centers of charge-neutral hydrophobic siloxane rings, whereas interlayer spaces close to structural charges tend to avoid CO2 intercalation. The structural charge distribution significantly affects the amount of CO2 intercalated in the interlayers. These results provide a mechanistic understanding of CO2 intercalation in clays for CO2 separation, capture, and storage.

More Details

Hydrophobic Nanoconfinement Enhances CO2 Conversion to H2CO3

Journal of Physical Chemistry Letters

Ho, Tuan A.; Dasgupta, Nabankur; Rempe, Susan R.; Wang, Yifeng

Understanding the formation of H2CO3 in water from CO2 is important in environmental and industrial processes. Although numerous investigations have studied this reaction, the conversion of CO2 to H2CO3 in nanopores, and how it differs from that in bulk water, has not been understood. We use ReaxFF metadynamics molecular simulations to demonstrate striking differences in the free energy of CO2 conversion to H2CO3 in bulk and nanoconfined aqueous environments. We find that nanoconfinement not only reduces the energy barrier but also reverses the reaction from endothermic in bulk water to exothermic in nanoconfined water. Also, charged intermediates are observed more often under nanoconfinement than in bulk water. Stronger solvation and more favorable proton transfer with increasing nanoconfinement enhance the thermodynamics and kinetics of the reaction. Here our results provide a detailed mechanistic understanding of an important step in the carbonation process, which depends intricately on confinement, surface chemistry, and CO2 concentration.

More Details

Carbon dioxide-enhanced metal release from kerogen

Scientific Reports

Ho, Tuan A.; Wang, Yifeng

Heavy metals released from kerogen to produced water during oil/gas extraction have caused major enviromental concerns. To curtail water usage and production in an operation and to use the same process for carbon sequestration, supercritical CO2 (scCO2) has been suggested as a fracking fluid or an oil/gas recovery agent. It has been shown previously that injection of scCO2 into a reservoir may cause several chemical and physical changes to the reservoir properties including pore surface wettability, gas sorption capacity, and transport properties. Using molecular dynamics simulations, we here demonstrate that injection of scCO2 might lead to desorption of physically adsorbed metals from kerogen structures. This process on one hand may impact the quality of produced water. On the other hand, it may enhance metal recovery if this process is used for in-situ extraction of critical metals from shale or other organic carbon-rich formations such as coal.

More Details
Results 1–25 of 91
Results 1–25 of 91