Thermochemical air separation to produce high-purity N2 was demonstrated in a vertical tube reactor via a two-step reduction–oxidation cycle with an A-site substituted perovskite Ba0.15Sr0.85FeO3–δ (BSF1585). BSF1585 particles were synthesized and characterized in terms of their chemical, morphological, and thermophysical properties. A thermodynamic cycle model and sensitivity analysis using computational heat and mass transfer models of the reactor were used to select the system operating parameters for a concentrating solar thermal-driven process. Thermal reduction up to 800 °C in air and temperature-swing air separation from 800 °C to minimum temperatures between 400 and 600 °C were performed in the reactor containing a 35 g packed bed of BSF1585. The reactor was characterized for dispersion, and air separation was characterized via mass spectrometry. Gas measurements indicated that the reactor produced N2 with O2 impurity concentrations as low as 0.02 % for > 30 min of operation. A parametric study of air flow rates suggested that differences in observed and thermodynamically predicted O2 impurities were due to imperfect gas transport in the bed. Temperature swing reduction/oxidation cycling experiments between 800 and 400 °C in air were conducted with no statistically significant degradation in N2 purity over 50 cycles.
A two-step solar thermochemical looping cycle based on Co3Mo3N/Co6Mo6N reduction/nitridation reactions offers a pathway for green NH3 production that utilizes concentrated solar irradiation, H2O, and air as feedstocks. The NH3 production cycle steps both derive process heat from concentrated solar irradiation and encompass 1) the reduction of Co3Mo3N in H2 to Co6Mo6N and NH3; and 2) nitridation of Co6Mo6N to Co3Mo3N with N2. Co3Mo3N reduction/nitridation reactions are examined at different H2 and/or N2 partial pressures and temperatures. NH3 production is quantified in situ using liquid conductivity measurements coupled with mass spectrometry (MS). Solid-state characterization is performed to identify a surface oxygen layer that necessitates the addition of H2 during cycling to prevent surface oxidation by trace amounts of O2. H2 concentrations of > 5% H2/Ar and temperatures >500 °C are required to reduce Co3Mo3N to Co6Mo6N and form NH3 at 1 bar. Complete regeneration of Co3Mo3N from Co6Mo6N is achieved at conditions of 700 °C under 25–75% H2/N2. H2 pressure-swings are observed to increase NH3 production during Co3Mo3N reduction. In conclusion, the results represent the first comprehensive characterization of and definitive non-catalytic production of NH3 via chemical looping with metal nitrides and provide insights for technology development.
Over the past few decades, inorganic nitride materials have grown in importance in part due to their potential as catalysts for the synthesis of NH3, a key ingredient in fertilizer and precursor to industrial chemicals. Of particular interest are the ternary (ABN) or higher-order nitrides with high metal-to-nitrogen ratios that show promise in enhancing NH3 synthesis reaction rates and yields via heterogeneous catalysis or chemical looping. Although metal nitrides are predicted to be numerous, the stability of nitrogen triple bonds found in N2, especially in comparison to the metal-nitrogen bonds, has considerably hindered synthetic efforts to produce complex nitride compounds. In this study, we present an exhaustive down-selection process to identify ternary nitrides for a promising chemical looping NH3 production mechanism. We also report on a facile and efficient two-step synthesis method that can produce well-characterized η-carbide Co3Mo3N/Fe3Mo3N or filled β-manganese Ni2Mo3N ternaries, as well as their associated quaternary, (Co,Fe)3Mo3N, (Fe,Ni)2Mo3N, and (Co,Ni)2Mo3N, solid solutions. To further explore the quaternary space, syntheses of (Co,Ni)3Mo3N (Ni ≤ 10 mol %) and Co3(Mo,W)3N (W ≤ 10 mol %) were also investigated. The structures of the nitrides were characterized via X-ray powder diffraction. The morphology and compositions were characterized with scanning electron microscopy. The multitude of chemically unique, but structurally related, nitrides suggests that properties such as nitrogen activity may be tunable, making the materials of great interest for NH3 synthesis schemes.
Solar Thermal Ammonia Production has potential to produce green ammonia using CSP, air, and water. Air separation to purify N2 was successfully demonstrated with BSF1585 in packed bed reactor; on-sun reduction reactor under construction. Metal nitrides (MNy) were successfully synthesized and characterized under both ambient and pressurized conditions. Co3Mo3N shown to successfully produce NH3 when exposed to pure H2 at pressures between 5 – 20 bar 600 – 750 °C. Ambient reaction experiments imply there may be a catalytic aspect as well. Technoeconomic and systems analyses show a path towards scale-up.
Solar Thermal Ammonia Production has the potential to synthesize ammonia in a green, renewable process that can greatly reduce the carbon footprint left by conventional Haber-Bosch reaction. Ternary nitrides in the family A3BxN (A=Co, Ni, Fe; B=Mo; x=2,3) have been identified as a potential candidate for NH3 production. Experiments with Co3Mo3N in Ammonia Synthesis Reactor demonstrate cyclable NH3 production from bulk nitride under pure H2. Production rates were fairly flat in all the reduction steps with no evident dependence on the consumed solid-state nitrogen, as would be expected from catalytic Mars-van Krevelen mechanism. Material can be re-nitridized under pure N2. Bulk nitrogen per reduction step average between 25 – 40% of the total solid-state nitrogen. Selectivity to NH3 stabilized at 55 – 60% per cycle. Production rates (NH3 and N2) become apparent above 600 °C at P(H2) = 0.5 – 2 bar. Optimal point of operation to keep selectivity high without compromising NH3 rates currently estimated at 650 °C and 1.5 - 2 bar. The next steps are to optimize production rates, examine effect of N2 addition in NH3 synthesis reaction, and test additional ternary nitrides.
This report provides a design study to produce 100% carbon-free electricity for Sandia NM and Kirtland Air Force Base (KAFB) using concentrating solar power (CSP). Annual electricity requirements for both Sandia and KAFB are presented, along with specific load centers that consume a significant and continuous amount of energy. CSP plant designs of 50 MW and 100 MW are then discussed to meet the needs of Sandia NM and the combined electrical needs of both Sandia NM and KAFB. Probabilistic modeling is performed to evaluate inherent uncertainties in performance and cost parameters on total construction costs and the levelized cost of electricity. Total overnight construction costs are expected to range between ~$300M - $400M for the 50 MW CSP plant and between ~$500M - $800M for the 100 MW plant. Annual operations and maintenance (O&M) costs are estimated together with potential offsets in electrical costs and CO2 emissions. Other considerations such as interconnections, land use and permitting, funding options, and potential agreements and partnerships with Public Service Company of New Mexico (PNM), Western Area Power Administration (WAPA), and other entities are also discussed.
CO2-neutral ammonia production with concentrated solar technology is theoretically possible based on advanced solar thermochemical looping technology. The parametric analysis points to the re-oxidation temperature and the H3 yield as the most influential parameters in the energy balance. The cycle time and the nitride cost are the most influential parameters on the CAPEX. The techno-economics analysis shows the potential of the plant to achieve a target price <125 $\$$/tonne.
Solar Thermal Ammonia Production has the potential to synthesize ammonia in a green, renewable process that can greatly reduce the carbon footprint left by the conventional Haber-Bosch reaction. Co3Mo3N has been identified as a potential candidate for ammonia production. It is synthesized via oxide precursor synthesis followed by nitridation under 10% H2/N2. The synthesis method can be extended to other candidate nitrides. The Co3Mo3N → Co6Mo6N reduction is demonstrated on TGA with rapid kinetics. The formation of NH3 is qualitatively observed, but not quantitatively determined. The material retains crystal structure, but no secondary phases are observed in XRD. Partial re-nitridation back to CMN331 of ~35% of max nitridation is observed. Reaction parameters in TGA differ from experimental conditions in the literature. Experiments at Georgia Tech better mimic re-nitridation conditions with more sensitive, quantitative analytical techniques (GC-MS). The ASU NH3 synthesis/re-nitridation reactor is under development and will permit experiments (reduction/re-nitridation) under precisely controlled T, pH2.
Two-step solar thermochemical cycles based on reversible reactions of SrFeO3−δand (Ba,La)0.15Sr0.85FeO3−δperovskites were considered for air separation. The cycle steps encompass (1) the thermal reduction of SrFeO3−δor (Ba,La)0.15Sr0.85FeO3−δperovskites driven by concentrated solar irradiation and (2) oxidation in air to remove O2and produce N2. Rate limiting mechanisms were examined for both reactions using a combination of isothermal and non-isothermal thermogravimetry for temperature-swings between 673 and 1373 K, heating rates of 10, 20, and 50 K min−1, and O2pressure-swings between 20% O2/Ar and 100% Ar at atmospheric pressure. Evolved O2and associated lag due to transport behavior were measured with gas chromatography and used with measured sample temperatures to predict equilibrium compositions from a compound energy formalism thermodynamic model. Measured and predicted chemical equilibrium changes in deviation from stoichiometry were compared. Rapid chemical kinetics were observed as the samples equilibrated rapidly for all conditions, indicative that heat and mass transfer were the rate limiting mechanisms. The effects of bulk diffusion (or gas diffusion through the bed or pellet) were examined using pelletized and loose powdered samples and determined to have no discernable impact.
A two-step solar thermochemical cycle was considered for air separation to produce N2 based on (Ba,La)xSr1-xFeO3-δ perovskite reduction/oxidation (redox) reactions for A-site fractions of 0 ≤ x ≤ 0.2. The cycle steps encompassed (1) thermal reduction and O2 release via concentrated solar input and (2) re-oxidation with air to uptake O2 and produce high-purity N2. Thermogravimetry at temperatures between 400 and 1100 °C in atmospheres of 0.005 to 90% O2/Ar at 1 bar was performed to measure equilibrium nonstoichiometries. The compound energy formalism was applied to model redox thermodynamics for both Ba2+ and La3+ substitution. Non-linear regression was used to determine the empirical parameters based on the thermogravimetric measurements. The model was used to define partial molar reaction enthalpies and entropies and predicted equilibrium oxygen nonstoichiometry as functions of oxide stoichiometry, site fraction, temperature, and O2 partial pressure. The thermodynamic analysis showed the materials are appealing for air separation at temperatures below 800 °C.
An A-and B-site substitutional study of SrFeO3−δ perovskites (A’x A1−x B’y B1−y O3−δ, where A = Sr and B = Fe) was performed for a two-step solar thermochemical air separation cycle. The cycle steps encompass (1) the thermal reduction of A’x Sr1−x B’y Fe1−y O3−δ driven by concentrated solar irradiation and (2) the oxidation of A’x Sr1−x B’y Fe1−y O3−δ in air to remove O2, leaving N2 . The oxidized A’x Sr1−x B’y Fe1−y O3−δ is recycled back to the first step to complete the cycle, resulting in the separation of N2 from air and concentrated solar irradiation. A-site substitution fractions between 0 ≤ x ≤ 0.2 were examined for A’ = Ba, Ca, and La. B-site substitution fractions between 0 ≤ y ≤ 0.2 were examined for B’ = Cr, Cu, Co, and Mn. Samples were prepared with a modified Pechini method and characterized with X-ray diffractometry. The mass changes and deviations from stoichiometry were evaluated with thermogravimetry in three screenings with temperature-and O2 pressure-swings between 573 and 1473 K and 20% O2 /Ar and 100% Ar at 1 bar, respectively. A’ = Ba or La and B’ = Co resulted in the most improved redox capacities amongst temperature-and O2 pressure-swing experiments.
Bush, Hagan E.; Schrader, Andrew J.; Loutzenhiser, Peter G.
A novel method for pairing surface irradiation and volumetric absorption from Monte Carlo ray tracing to computational heat transfer models is presented. The method is well-suited to directionally and spatially complex concentrated radiative inputs (e.g., solar receivers and reactors). The method employs a generalized algorithm for directly mapping absorbed rays from a Monte Carlo ray tracing model to boundary or volumetric source terms in the computational mesh. The algorithm is compatible with unstructured, two and three-dimensional meshes with varying element shapes. Four case studies were performed on a directly irradiated, windowed solar thermochemical reactor model to validate the method. The method was shown to conserve energy and preserve spatial variation when mapping rays from a Monte Carlo ray tracing model to a computational heat transfer model in ansys fluent.