Cryogenic Control Circuitry for Superconducting Qubits
Report for LDRD project 225992 with title Cryogenic Control Circuitry for Superconducting Qubits
Report for LDRD project 225992 with title Cryogenic Control Circuitry for Superconducting Qubits
Applied Physics Letters
We examine the DC and radio frequency (RF) response of superconducting transmission line resonators comprised of very thin NbTiN films, < 12 nm in thickness, in the high-temperature limit, where the photon energy is less than the thermal energy. The resonant frequencies of these superconducting resonators show a significant nonlinear response as a function of RF input power, which can approach a frequency shift of Δ f = - 0.15 % in a - 20 dB span in the thinnest film. The strong nonlinear response allows these very thin film resonators to serve as high kinetic inductance parametric amplifiers.
Hole spin qubits confined to lithographically - defined lateral quantum dots in Ge/SiGe heterostructures show great promise. On reason for this is the intrinsic spin - orbit coupling that allows all - electric control of the qubit. That same feature can be exploited as a coupling mechanism to coherently link spin qubits to a photon field in a superconducting resonator, which could, in principle, be used as a quantum bus to distribute quantum information. The work reported here advances the knowledge and technology required for such a demonstration. We discuss the device fabrication and characterization of different quantum dot designs and the demonstration of single hole occupation in multiple devices. Superconductor resonators fabricated using an outside vendor were found to have adequate performance and a path toward flip-chip integration with quantum devices is discussed. The results of an optical study exploring aspects of using implanted Ga as quantum memory in a Ge system are presented.
Abstract not provided.
Coherent manipulation of quantum states is at the core of quantum information science (QIS). Many state-of-the-art quantum systems rely on microwave fields for quantum operations. As such, the microwave electromagnetic fields serve as the ideal "quantum bus" to integrate different types of QIS systems into a hybrid quantum system. Superconducting metamaterials are artificial materials consisting of arrays of superconducting resonant microstructures with sizes much smaller than the microwave wavelengths of interest. Superconducting metamaterials are a strong candidate medium for the microwave quantum bus, because the effective impedance, field distributions, and frequency response can all be controlled by engineering the microstructures, electrical bias, and magnetic flux while maintaining extremely low loss. In this project, we investigate the fundamental unit of a superconducting metamaterial - a resonator with physical dimensions much smaller than the microwave wavelengths - using NbTiN as the working superconductor, whose high operating temperatures and magnetic fields are desirable attributes for compatibility with a wide variety of quantum systems. We first studied the properties of sputtered NbTiN thin films by correlating the film thickness with the normal state resistivity, superconducting transition temperature, and resonances of transmission line resonators made from these films. We developed a process flow and designed a coplanar waveguide platform for studying small resonators. The platform significantly shortens the turnaround times of the resonator fabrication and testing cycles. Several resonators with different designs were fabricated and tested at 4 Kelvin. Resonances were observed in some resonator testers. Potential paths for improvements and future directions are discussed.