Simulating Variable Volcanic Mass Injection toward Informing the Minimal Viable Stratospheric Aerosol Injection Experiment
Abstract not provided.
Abstract not provided.
Wind Energy Science
Experiments offer incredible value to science, but results must always come with an uncertainty quantification to be meaningful. This requires grappling with sources of uncertainty and how to reduce them. In wind energy, field experiments are sometimes conducted with a control and treatment. In this scenario uncertainty due to bias errors can often be neglected as they impact both control and treatment approximately equally. However, uncertainty due to random errors propagates such that the uncertainty in the difference between the control and treatment is always larger than the random uncertainty in the individual measurements if the sources are uncorrelated. As random uncertainties are usually reduced with additional measurements, there is a need to know the minimum duration of an experiment required to reach acceptable levels of uncertainty. We present a general method to simulate a proposed experiment, calculate uncertainties, and determine both the measurement duration and the experiment duration required to produce statistically significant and converged results. The method is then demonstrated as a case study with a virtual experiment that uses real-world wind resource data and several simulated tip extensions to parameterize results by the expected difference in power. With the method demonstrated herein, experiments can be better planned by accounting for specific details such as controller switching schedules, wind statistics, and postprocess binning procedures such that their impacts on uncertainty can be predicted and the measurement duration needed to achieve statistically significant and converged results can be determined before the experiment.
Abstract not provided.
Abstract not provided.
In this work, thermogravimetric analysis (TGA) was performed on samples of a carbon fiber epoxy composite, a glass fiber epoxy composite, and a mixed carbon fiber/glass fiber epoxy composite, as well on each constituent material (polymer epoxy, carbon fibers and glass fibers). TGA was conducted for heating rates from 1-20 C/min with purified purge gases of nitrogen and dry air. For the fiberglass composite, we find that ~70% of the material remains after heating in air to 1200 C. For the carbon fiber epoxy composite, we observe greater mass loss as the carbon fibers can oxidize, leaving little material by the end of the test. The mixed composite, which has a 2:1 ratio of glass fibers to carbon fibers, experienced a total mass loss between the two other composites. By determining the relationship between the thermal decomposition of a composite material and its constituent materials, we can predict the fire behavior of novel composites during the material design phase.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
OCEANS 2023 - Limerick, OCEANS Limerick 2023
The novel Hydromine harvests energy from flowing water with no external moving parts, resulting in a robust system with minimal environmental impact. Here two deployment scenarios are considered: an offshore floating platform configuration to capture energy from relatively steady ocean currents at megawatt-scale, and a river-based system at kilowatt-scale mounted on a pylon. Hydrodynamic and techno-economic models are developed. The hydrodynamic models are used to maximize the efficiency of the power conversion. The techno-economic models optimize the system size and layout and ultimately seek to minimize the levelized-cost-of-electricity produced. Parametric and sensitivity analyses are performed on the models to optimize performance and reduce costs.
OCEANS 2023 - Limerick, OCEANS Limerick 2023
The novel Hydromine harvests energy from flowing water with no external moving parts, resulting in a robust system with minimal environmental impact. Here two deployment scenarios are considered: an offshore floating platform configuration to capture energy from relatively steady ocean currents at megawatt-scale, and a river-based system at kilowatt-scale mounted on a pylon. Hydrodynamic and techno-economic models are developed. The hydrodynamic models are used to maximize the efficiency of the power conversion. The techno-economic models optimize the system size and layout and ultimately seek to minimize the levelized-cost-of-electricity produced. Parametric and sensitivity analyses are performed on the models to optimize performance and reduce costs.
AIAA SciTech Forum and Exposition, 2023
This paper describes the methodology of designing a replacement blade tip and winglet for a wind turbine blade to demonstrate the potential of additive-manufacturing for wind energy. The team will later field-demonstrate this additive-manufactured, system-integrated tip (AMSIT) on a wind turbine. The blade tip aims to reduce the cost of wind energy by improving aerodynamic performance and reliability, while reducing transportation costs. This paper focuses on the design and modeling of a winglet for increased power production while maintaining acceptable structural loads of the original Vestas V27 blade design. A free-wake vortex model, WindDVE, was used for the winglet design analysis. A summary of the aerodynamic design process is presented along with a case study of a specific design.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nalu-Wind is part of the ExaWind code suite.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Wind Engineering and Industrial Aerodynamics
The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.
Journal of Verification, Validation and Uncertainty Quantification
Organic materials are an attractive choice for structural components due to their light weight and versatility. However, because they decompose at low temperatures relative to tradiational materials they pose a safety risk due to fire and loss of structural integrity. To quantify this risk, analysts use chemical kinetics models to describe the material pyrolysis and oxidation using thermogravimetric analysis. This process requires the calibration of many model parameters to closely match experimental data. Previous efforts in this field have largely been limited to finding a single best-fit set of parameters even though the experimental data may be very noisy. Furthermore the chemical kinetics models are often simplified representations of the true de- composition process. The simplification induces model-form errors that the fitting process cannot capture. In this work we propose a methodology for calibrating decomposition models to thermogravimetric analysis data that accounts for uncertainty in the model-form and experimental data simultaneously. The methodology is applied to the decomposition of a carbon fiber epoxy composite with a three-stage reaction network and Arrhenius kinetics. The results show a good overlap between the model predictions and thermogravimetric analysis data. Uncertainty bounds capture devia- tions of the model from the data. The calibrated parameter distributions are also presented. In conclusion, the distributions may be used in forward propagation of uncertainty in models that leverage this material.