Publications

Results 1–25 of 28
Skip to search filters

A Forward Analytic Model of Neutron Time-of-Flight Signals for Inferring Ion Temperatures from MagLIF Experiments

Fusion Science and Technology

Weaver, Colin A.; Cooper, Gary W.; Perfetti, Christopher; Ampleford, David A.; Chandler, Gordon A.; Knapp, Patrick K.; Mangan, Michael M.; Styron, Jedediah

A forward analytic model is required to rapidly simulate the neutron time-of-flight (nToF) signals that result from magnetized liner inertial fusion (MagLIF) experiments at Sandia’s Z Pulsed Power Facility. Various experimental parameters, such as the burn-weighted fuel-ion temperature and liner areal density, determine the shape of the nToF signal and are important for characterizing any given MagLIF experiment. Extracting these parameters from measured nToF signals requires an appropriate analytic model that includes the primary deuterium-deuterium neutron peak, once-scattered neutrons in the beryllium liner of the MagLIF target, and direct beamline attenuation. Mathematical expressions for this model were derived from the general-geometry time- and energy-dependent neutron transport equation with anisotropic scattering. Assumptions consistent with the time-of-flight technique were used to simplify this linear Boltzmann transport equation into a more tractable form. Models of the uncollided and once-collided neutron scalar fluxes were developed for one of the five nToF detector locations at the Z-Machine. Numerical results from these models were produced for a representative MagLIF problem and found to be in good agreement with similar neutron transport simulations. Twenty experimental MagLIF data sets were analyzed using the forward models, which were determined to only be significantly sensitive to the ion temperature. The results of this work were also found to agree with values obtained separately using a zero scatter analytic model and a high-fidelity Monte Carlo simulation. Inherent difficulties in this and similar techniques are identified, and a new approach forward is suggested.

More Details

Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion

Physics of Plasmas

Lewis, William L.; Knapp, Patrick K.; Slutz, Stephen A.; Schmit, Paul S.; Chandler, Gordon A.; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Mangan, Michael M.; Ampleford, David A.; Beckwith, Kristian B.

Fuel magnetization in magneto-inertial fusion (MIF) experiments improves charged burn product confinement, reducing requirements on fuel areal density and pressure to achieve self-heating. By elongating the path length of 1.01 MeV tritons produced in a pure deuterium fusion plasma, magnetization enhances the probability for deuterium-tritium reactions producing 11.8−17.1 MeV neutrons. Nuclear diagnostics thus enable a sensitive probe of magnetization. Characterization of magnetization, including uncertainty quantification, is crucial for understanding the physics governing target performance in MIF platforms, such as magnetized liner inertial fusion (MagLIF) experiments conducted at Sandia National Laboratories, Z-facility. We demonstrate a deep-learned surrogate of a physics-based model of nuclear measurements. A single model evaluation is reduced from CPU hours on a high-performance computing cluster down to ms on a laptop. This enables a Bayesian inference of magnetization, rigorously accounting for uncertainties from surrogate modeling and noisy nuclear measurements. The approach is validated by testing on synthetic data and comparing with a previous study. We analyze a series of MagLIF experiments systematically varying preheat, resulting in the first ever systematic experimental study of magnetic confinement properties of the fuel plasma as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that magnetization decreases from B ∼0.5 to B MG cm as laser preheat energy deposited increases from preheat ∼460 J to E preheat ∼1.4 kJ. This trend is consistent with 2D LASNEX simulations showing Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.

More Details

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Lewis, William L.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

Developing a platform to enable parameter scaling studies in Magnetized Liner Inertial Fusion experiments

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Weis, Matthew R.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Awe, Thomas J.; Chandler, Gordon A.; Crabtree, Jerry A.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harding, Eric H.; Lewis, William L.; Mangan, Michael M.; Ruiz, Daniel E.; Smith, Ian C.; Yager-Elorriaga, David A.; Ampleford, David A.; Beckwith, Kristian B.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly D.; Hansen, Stephanie B.; Hanson, Joseph C.; Harding, Eric H.; Knapp, Patrick K.; Mangan, Michael M.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Paguio, Reny P.; Smith, Gary L.; York, Adam Y.

Abstract not provided.

Stagnation performance scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton E.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Knapp, Patrick K.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael M.; Ruiz, Carlos L.; Chandler, Gordon A.; Webb, Timothy J.; Moore, Thomas M.; Laity, George R.; Ampleford, David A.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

Stagnation Performance Scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton E.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Knapp, Patrick K.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael M.; Ruiz, Carlos L.; Chandler, Gordon A.; Hahn, Kelly D.; Webb, Timothy J.; Moore, Thomas M.; Laity, George R.; Ampleford, David A.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

Results 1–25 of 28
Results 1–25 of 28