Operations and Maintenance (O&M) Harmonization
Abstract not provided.
Abstract not provided.
Abstract not provided.
Progress in Photovoltaics: Research and Applications
All freely available plane-of-array (POA) transposition models and photovoltaic (PV) temperature and performance models in pvlib-python and pvpltools-python were examined against multiyear field data from Albuquerque, New Mexico. The data include different PV systems composed of crystalline silicon modules that vary in cell type, module construction, and materials. These systems have been characterized via IEC 61853-1 and 61853-2 testing, and the input data for each model were sourced from these system-specific test results, rather than considering any generic input data (e.g., manufacturer's specification [spec] sheets or generic Panneau Solaire [PAN] files). Six POA transposition models, 7 temperature models, and 12 performance models are included in this comparative analysis. These freely available models were proven effective across many different types of technologies. The POA transposition models exhibited average normalized mean bias errors (NMBEs) within ±3%. Most PV temperature models underestimated temperature exhibiting mean and median residuals ranging from −6.5°C to 2.7°C; all temperature models saw a reduction in root mean square error when using transient assumptions over steady state. The performance models demonstrated similar behavior with a first and third interquartile NMBEs within ±4.2% and an overall average NMBE within ±2.3%. Although differences among models were observed at different times of the day/year, this study shows that the availability of system-specific input data is more important than model selection. For example, using spec sheet or generic PAN file data with a complex PV performance model does not guarantee a better accuracy than a simpler PV performance model that uses system-specific data.
Abstract not provided.
Renewable Energy
It is commonly assumed that cleaning photovoltaic (PV) modules is unnecessary when the inverter is undersized because clipping will sufficiently mask the soiling losses. Clipping occurs when the inverter's AC size is smaller than the overall modules' DC capacity and leads to the conversion of only part of the PV-generated DC energy into AC. This study evaluates the validity of this assumption, theoretically investigating the current magnitude of clipping and its effect on soiling over the contiguous United States. This is done by modelling energy yield, clipping and soiling across a grid of locations. The results show that in reality, under the current deployment trends, inverter undersizing minimally affects soiling, as it reduces these losses by no more than 1%absolute. Indeed, clipping masks soiling in areas where losses are already low, whereas it has a negligible effect where soiling is most significant. However, the mitigation effects might increase under conditions of lower performance losses or more pronounced inverter undersizing. In any case, one should take into account that degradation makes clipping less frequent as systems age, also decreasing its masking effect on soiling. Therefore, even if soiling was initially mitigated by the inverter undersizing, its effect would become more visible with time.
Optik
In the rapidly evolving field of solar energy, Photovoltaic (PV) manufacturers are constantly challenged by the degradation of PV modules due to localized overheating, commonly known as hotspots. This issue not only reduce the efficiency of solar panels but, in severe cases, can lead to irreversible damage, malfunctioning, and even fire hazards. Addressing this critical challenge, our research introduces an innovative electronic device designed to effectively mitigate PV hotspots. This pioneering solution consists of a novel combination of a current comparator and a current mirror circuit. These components are uniquely integrated with an automatic switching mechanism, notably eliminating the need for traditional bypass diodes. We rigorously tested and validated this device on PV modules exhibiting both adjacent and non-adjacent hotspots. Our findings are groundbreaking: the hotspot temperatures were significantly reduced from a dangerous 55 °C to a safer 35 °C. Moreover, this intervention remarkably enhanced the output power of the modules by up to 5.3%. This research not only contributes a practical solution to a longstanding problem in solar panel efficiency but also opens new pathways for enhancing the safety and longevity of solar PV systems.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
More than 90% of utility-scale photovoltaic (PV) power plants in the US use single-axis trackers (SATs) due to their potential for substantially higher power production over fixed-array systems. However, they are subject to software misconfigurations and mechanical failures, leading to suboptimal tracking accuracy. If failures are left undetected, the overall power yield of the PV power plant is reduced significantly. Robust detection and diagnosis of SAT faults is needed to minimize downtime and ensure continuous and efficient operation. This work presents analytic tools based on machine learning to detect deviations in SAT tracking performance and classify SAT faults.
Solar RRL
Different data pipelines and statistical methods are applied to photovoltaic (PV) performance datasets to quantify the performance loss rate (PLR). Since the real values of PLR are unknown, a variety of unvalidated values are reported. As such, the PV industry commonly assumes PLR based on statistically extracted ranges from the literature. However, the accuracy and uncertainty of PLR depend on several parameters including seasonality, local climatic conditions, and the response of a particular PV technology. In addition, the specific data pipeline and statistical method used affect the accuracy and uncertainty. To provide insights, a framework of (≈200 million) synthetic simulations of PV performance datasets using data from different climates is developed. Time series with known PLR and data quality are synthesized, and large parametric studies are conducted to examine the accuracy and uncertainty of different statistical approaches over the contiguous US, with an emphasis on the publicly available and “standardized” library, RdTools. In the results, it is confirmed that PLRs from RdTools are unbiased on average, but the accuracy and uncertainty of individual PLR estimates vary with climate zone, data quality, PV technology, and choice of analysis workflow. Best practices and improvement recommendations based on the findings of this study are provided.
Solar RRL
Different data pipelines and statistical methods are applied to photovoltaic (PV) performance datasets to quantify the performance loss rate (PLR). Since the real values of PLR are unknown, a variety of unvalidated values are reported. As such, the PV industry commonly assumes PLR based on statistically extracted ranges from the literature. However, the accuracy and uncertainty of PLR depend on several parameters including seasonality, local climatic conditions, and the response of a particular PV technology. In addition, the specific data pipeline and statistical method used affect the accuracy and uncertainty. To provide insights, a framework of (≈200 million) synthetic simulations of PV performance datasets using data from different climates is developed. Time series with known PLR and data quality are synthesized, and large parametric studies are conducted to examine the accuracy and uncertainty of different statistical approaches over the contiguous US, with an emphasis on the publicly available and “standardized” library, RdTools. In the results, it is confirmed that PLRs from RdTools are unbiased on average, but the accuracy and uncertainty of individual PLR estimates vary with climate zone, data quality, PV technology, and choice of analysis workflow. Best practices and improvement recommendations based on the findings of this study are provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Progress in Photovoltaics: Research and Applications
The Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane-of-array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.
Abstract not provided.
Abstract not provided.
Solar RRL
Photovoltaic systems may underperform expectations for several reasons, including inaccurate initial estimates, suboptimal operations and maintenance, or component degradation. Accurate assessment of these loss factors aids in addressing root causes of underperformance and in realizing accurate expectations and models. The performance loss rate (PLR) is a commonly cited high-level metric for the change in system output over time, but there is no precise, standard definition. Herein, an annualized definition of PLR that is inclusive of all loss factors and that can capture nonlinear changes to performance over time is proposed. The importance of distinguishing between recoverable and nonrecoverable losses which underly PLR is highlighted.
Abstract not provided.
Abstract not provided.
Energies
The accurate quantification of the performance loss rate of photovoltaic systems is critical for project economics. Following the current research activities in the photovoltaic performance and reliability field, this work presents a comparative assessment between common change point methods for performance loss rate estimation of fielded photovoltaic installations. An extensive testing campaign was thus performed to evaluate time series analysis approaches for performance loss rate evaluation of photovoltaic systems. Historical electrical data from eleven photovoltaic systems installed in Nicosia, Cyprus, and the locations’ meteorological measurements over a period of 8 years were used for this investigation. The application of change point detection algorithms on the constructed monthly photovoltaic performance ratio series revealed that the obtained trend might not always be linear. Specifically, thin film photovoltaic systems showed nonlinear behavior, while nonlinearities were also detected for some crystalline silicon photovoltaic systems. When applying several change point techniques, different numbers and locations of changes were detected, resulting in different performance loss rate values (varying by up to 0.85%/year even for the same number of change points). The results highlighted the importance of the application of nonlinear techniques and the need to extract a robust nonlinear model for detecting significant changes in time series data and estimating accurately the performance loss rate of photovoltaic installations.
This document provides the instructions for participating in the 2021 blind photovoltaic (PV) modeling intercomparison organized by the PV Performance Modeling Collaborative (PVPMC). It describes the system configurations, metadata, and other information necessary for the modeling exercise. The practical details of the validation datasets are also described. The datasets were published online in open access in April 2023, after completing the analysis of the results.
Abstract not provided.
Abstract not provided.