Publications

Results 1–25 of 226

Search results

Jump to search filters

Predictive dynamic wetting, fluid–structure interaction simulations for braze run-out

Computers and Fluids

Horner, Jeffrey S.; Kemmenoe, David J.; Bourdon, Gustav J.; Roberts, Scott A.; Arata, Edward R.; Ray, Jaideep; Grillet, Anne M.

Brazing and soldering are metallurgical joining techniques that use a wetting molten metal to create a joint between two faying surfaces. The quality of the brazing process depends strongly on the wetting properties of the molten filler metal, namely the surface tension and contact angle, and the resulting joint can be susceptible to various defects, such as run-out and underfill, if the material properties or joining conditions are not suitable. In this work, we implement a finite element simulation to predict the formation of such defects in braze processes. This model incorporates both fluid–structure interaction through an arbitrary Eulerian–Lagrangian technique and free surface wetting through conformal decomposition finite element modeling. Upon validating our numerical simulations against experimental run-out studies on a silver-Kovar system, we then use the model to predict run-out and underfill in systems with variable surface tension, contact angles, and applied pressure. Finally, we consider variable joint/surface geometries and show how different geometrical configurations can help to mitigate run-out. This work aims to understand how brazing defects arise and validate a coupled wetting and fluid–structure interaction simulation that can be used for other industrial problems.

More Details

A performant energy-conserving particle reweighting method for Particle-in-Cell simulations

Journal of Computational Physics

Boerner, Jeremiah J.; Hall, Taylor; Hooper, Russell; Bettencourt, Matthew T.; Grillet, Anne M.; Hopkins, Matthew M.; Pacheco, Jose L.

A new particle-based reweighting method is developed and demonstrated in the Aleph Particle-in-Cell with Direct Simulation Monte Carlo (PIC-DSMC) program. Novel splitting and merging algorithms ensure that modified particles maintain physically consistent positions and velocities. This method allows a single reweighting simulation to efficiently model plasma evolution over orders of magnitude variation in density, while accurately preserving energy distribution functions (EDFs). Demonstrations on electrostatic sheath and collisional rate dynamics show that reweighting simulations achieve accuracy comparable to fixed weight simulations with substantial computational time savings. This highly performant reweighting method is recommended for modeling plasma applications that require accurate resolution of EDFs or exhibit significant density variations in time or space.

More Details

A data-driven multiscale model for reactive wetting simulations

Computers and Fluids

Horner, Jeffrey S.; Winter, Ian; Kemmenoe, David J.; Arata, Edward R.; Chandross, Michael E.; Roberts, Scott A.; Grillet, Anne M.

We describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop's composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material's wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.

More Details

Pressure-based process monitoring of direct-ink write material extrusion additive manufacturing

Additive Manufacturing

Kopatz, Jessica W.; Reinholtz, William D.; Cook, Adam; Tappan, Alexander S.; Grillet, Anne M.

As additive manufacturing (AM) has become a reliable method for creating complex and unique hardware rapidly, the quality assurance of printed parts remains a priority. In situ process monitoring offers an approach for performing quality control while simultaneously minimizing post-production inspection. For extrusion printing processes, direct linkages between extrusion pressure fluctuations and print defects can be established by integrating pressure sensors onto the print head. In this work, the sensitivity of process monitoring is tested using engineered spherical defects. Pressure and force sensors located near an ink reservoir and just before the nozzle are shown to assist in identification of air bubbles, changes in height between the print head and build surface, clogs, and particle aggregates with a detection threshold of 60–70% of the nozzle diameter. Visual evidence of printed bead distortion is quantified using optical image analysis and correlated to pressure measurements. Importantly, this methodology provides an ability to monitor the quality of AM parts produced by extrusion printing methods and can be accomplished using commonly available pressure-sensing equipment.

More Details

Increasing CO2 Capture Rate in Liquid-Solvent Direct-Air Carbon Capture via Additive Manufacturing

Rodgers, Theron M.; Domino, Stefan P.; Grillet, Anne M.; Mcmaster, Anthony M.; Heiden, Michael J.

Carbon capture is essential to meeting climate change mitigation goals. One approach currently being commercialized utilizes liquid-based solvents to capture CO2 directly from the atmosphere but is limited by slow absorption of CO2 into the liquid. Improved air/solvent liquid mixing increases CO2 absorption rate, and this increased CO2 absorption efficiency allows for smaller carbon capture systems with lower capital costs and better economic viability. In this project, we study the use of passive micromixers fabricated by metal additive manufacturing. The micromixer’s small-scale surface geometric features perturb and mix the liquid film to enhance mass transfer and CO2 absorption. In this project, we evaluated this hypothesis through computational and experimental studies. Computational investigations focused on developing capabilities to simulate thin film (~ 100μm) fluid flow on rough surfaces. Such thin films are in a surface-tension dominated regime and simulations in this regime are prone to instabilities. Improvements to the Nalu code completed in this project resulted in a 10x timestep stability improvement for these problems.

More Details

A level set approach for the computational study of a yield stress fluid filling a thin mold

Journal of Non-Newtonian Fluid Mechanics

Rao, Rekha R.; Cleaves, Helen L.; Grillet, Anne M.; Dey, Bikash; Mcconnell, Josh; Mcmaster, Anthony M.; Newell, Pania; Ortiz, Weston; Secor, Robert B.; Tjiptowidjojo, Kristianto

Many important engineering and scientific applications such as cement slurries, foams, crude oil, and granular avalanches involve the concept of yield stress. Therefore, modeling yield stress fluids in different flow configurations, including the accurate prediction of the yield surface, is important. In this paper, we present a computational model based on the finite element method to study the flow of yield stress fluids in a thin mold and compare the results with data from flow visualization experiments. We use the level set method to describe the interface between the filling fluid and air. We use polypropylene glycol as a model Newtonian fluid and Carbopol for the model yield stress fluid, as the Carbopol solution demonstrates yielding without thixotropy. To describe the yielding and shear-thinning behavior, we use a generalized Newtonian constitutive equation with a Bingham–Carreau–Yasuda form. We compare the results obtained from the mold filling experiments with the results from the three-dimensional (3D) model and from a reduced-order Hele-Shaw (HS) model that is two-dimensional, including the effect of shear-thinning along the thin direction only approximately. We show that both the 3D and the HS model can capture the experimental meniscus shape reasonably well for all the fluids considered at three different flow rates. This indicates that the shape evolution is insensitive to the dimensionality of the model. However, the viscosity and yield surfaces predicted by the 3D and HS models are different. The HS model underestimates the high viscosity and unyielded regions compared to the estimation by the 3D model.

More Details

Stress Birth and Death: Disruptive Computational Mechanics and Novel Diagnostics for Fluid-to-Solid Transitions

Rao, Rekha R.; Mcconnell, Joshua; Grillet, Anne M.; Mcmaster, Anthony M.; Cleaves, Helen L.; Roberts, Christine; Ortiz, Weston; Secor, Robert; Newell, Pania; Dey, Bikash; Rogers, Simon; Donley, Gavin; Kamani, Krutarth; Griebler, Jimmy

Many materials of interest to Sandia transition from fluid to solid or have regions of both phases coexisting simultaneously. Currently there are, unfortunately, no material models that can accurately predict this material response. This is relevant to applications that "birth stress" related to geoscience, nuclear safety, manufacturing, energy production and bioscience. Accurately capturing solidification and residual stress enables fully predictive simulations of the evolving front shape or final product. Accurately resolving flow of proppants or blood could reduce environmental impact or lead to better treatments for heart attacks, thrombosis, or aneurism. We will address a science question in this proposal: When does residual stress develop during the critical transition from liquid to solid and how does it affect material deformation? Our hypothesis is that these early phases of stress development are critical to predictive simulation of material performance, net shape, and aging. In this project, we use advanced constitutive models with yield stress to represent both fluid and solid behavior simultaneously. The report provides an abbreviated description of the results from our LDRD "Stress Birth and Death: Disruptive Computational Mechanics and Novel Diagnostics for Fluid-to-Solid Transitions," since we have written four papers that document the work in detail and which we reference. We give highlights of the work and describe the gravitationally driven flow visualization experiment on a model yield stress fluid, Carbopol, at various concentrations and flow rates. We were able to collapse the data on a single master curve by showing it was self-similar. We also describe the Carbopol rheology and the constitutive equations of interest including the Bingham-Carreau-Yasuda model, the Saramito model, and the HB-Saramito model including parameter estimation for the shear and oscillatory rheology. We present several computational models including the 3D moving mesh simulations of both the Saramito models and Bingham-Carreau-Yasuda (BCY) model. We also show results from the BCY model using a 3D level set method and two different ways of handling reduced order Hele-Shaw modeling for generalized Newtonian fluids. We present some first ever two-dimensional results for the modified Jeffries Kamani-Donley-Rogers constitutive equation developed during this project. We include some recent results with a successful Saramito-level set coupling that allows us to tackle problems with complex geometries like mold filling in a thin gap with an obstacle, without the need for remeshing or remapping. We report on some experiments for curing systems where fluorescent particles are used to track material flow. These experiments were carried out in an oven on Sylgard 184 as a model polymerizing system. We conclude the report with a summary of accomplishments and some thoughts on follow-on work.

More Details

Performance and electret charge of N95 respirators after decontamination [Slides]

Grillet, Anne M.; Storch, Steven; Nemer, Martin; Sanchez, Andres L.; Foulk, James W.; Piekos, Edward S.; Hurwitz, Ivy; Perkins, Douglas J.

Filtration, pressure drop and quantitative fit of N95 respirators were robust to several decontamination methods including vaporous hydrogen peroxide, wet heat, bleach, and ultraviolet light. Bleach may not have penetrated the hydrophobic outer layers of the N95 respirator. Isopropyl alcohol and detergent both severely degraded the electrostatic charge of the electret filtration layer. First data in N95 respirators that the loss of filtration efficiency was directly correlated with loss of surface potential on the filtration layer. The pressure drop was unchanged, so loss of filtration efficacy would not be apparent during a user seal check. Mechanical straps degrade with repeated mechanical cycling during extended use. Decontamination did not appear to degrade the elastic straps. Significant loss of strap elasticity would be apparent during a user negative pressure seal check.

More Details

Gamma radiation sterilization of N95 respirators leads to decreased respirator performance

PLoS ONE

Thelen, Paul M.; Grillet, Anne M.; Nemer, Martin; Olszewska-Wasiolek, Maryla A.; Hanson, Donald J.; Omana, Michael A.; Sanchez, Andres L.; Vehar, David W.

In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40–50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss.

More Details
Results 1–25 of 226
Results 1–25 of 226