Publications

Results 1–25 of 60
Skip to search filters

Corrosion-Resistant Coatings on Spent Nuclear Fuel Canisters to Mitigate and Repair Potential Stress Corrosion Cracking (FY22 Status)

Knight, Andrew W.; Nation, Brendan L.; Maguire, Makeila M.; Schaller, Rebecca S.; Bryan, Charles R.

This report summarizes the activities performed by Sandia National Laboratories in FY22 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports in FY20 and FY21 on the same topic. The previous work detailed the specific coating properties desired for application and implementation to spent nuclear fuel canisters (FY20) and identified several potential coatings for evaluation (FY21). In FY22, Sandia National Laboratories, in collaboration with four industry partners through a Memorandum of Understanding, started evaluating the physical, mechanical, and corrosion-resistance properties of 6 different coating systems (11 total coating variants) to develop a baseline understanding of the viability of each coating type for use to prevent, mitigate, and/or repair potential stress corrosion on cracking on spent nuclear fuel canisters. This collaborative R&D program leverages the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of the industry collaborators. The coating systems include organic (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and hybrid systems in conjuncture with a Zn-rich primer. These coatings were applied to stainless steel coupons (the same coupons were supplied to all vendors by SNL for direct comparison) and have undergone several physical, mechanical, and electrochemical tests. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters, and also to identify specific needs for further optimization of coating technologies for their application on spent nuclear fuel canisters. In FY22, Sandia National Laboratories performed baseline testing and atmospheric exposure tests of the coating samples supplied by the vendors in accordance with the scope of work defined in the Memorandum of Understanding. In FY23, Sandia National Laboratories will continue evaluating coating performance with a focus on thermal and radiolytic stability.

More Details

Analysis of Dust Samples Collected from a Near-Marine East Coast ISFSI Site ("Site C")

Bryan, Charles R.; Knight, Andrew W.; Maguire, Makeila M.

In June of 2022, dust samples were collected from the surface of an in-service spent nuclear fuel dry storage canister during an inspection at an Independent Spent Fuel Storage Installation. The site is anonymous but is a near-marine or brackish water east coast location referred to here as "Site C". The purpose of the sampling was to assess the composition and abundance of the soluble salts present on the canister surface, information that provides a metric for potential corrosion risks. Following collection, the samples were delivered to Sandia National Laboratories for analysis. At Sandia, the soluble salts were leached from the dust and quantified by ion chromatography. In addition, subsamples of the dust were taken for scanning electron microscopy to determine the particle sizes, morphology, and mineralogy of the dust and salts. The results of those analyses are presented in this report.

More Details

Development of Surface Sampling Techniques for the Canister Deposition Field Demonstration (FY22 Update)

Knight, Andrew W.; Schaller, Rebecca S.; Nation, Brendan L.; Durbin, S.G.; Bryan, Charles R.

This report describes the proposed surface sampling techniques and plan for the multi-year Canister Deposition Field Demonstration (CDFD). The CDFD is primarily a dust deposition test that will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters in Advanced Horizontal Storage Modules, with planned exposure testing for up to 10 years at an operating ISFSI site. One canister will be left at ambient condition, unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns for dust analysis will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, measured dust deposition rates and deposited particle sizes will improve parameterization of dust deposition models employed to predict the potential occurrence and timing of stress corrosion cracks on the stainless steel SNF canisters. The size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Previously, a preliminary sampling plan was developed, identifying possible sampling locations on the canister surfaces and sampling intervals; possible sampling methods were also described. Further development of the sampling plan has commenced through three different tasks. First, canister surface roughness, a potentially important parameter for air flow and dust deposition, was characterized at several locations on one of the test canisters. Second, corrosion testing to evaluate the potential lifetime and aging of thermocouple wires, spot welds, and attachments was initiated. Third, hand sampling protocols were developed, and initial testing was carried out. The results of those efforts are presented in this report. The information obtained from the CDFD will be critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking of SNF dry storage canisters.

More Details

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY21 Status Report)

Bryan, Charles R.; Knight, Andrew W.; Nation, Brendan L.; Montoya, Timothy M.; Karasz, Erin K.; Katona, Ryan M.; Schaller, Rebecca S.

This progress report describes work performed during FY21 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of canister materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In FY21, modeling and experimental work was performed that further defined our understanding of the potential chemical and physical environment present on canister surfaces at both marine and inland sites. Research also evaluated the relationship between the environment and the rate, extent, and morphology of corrosion, as well as the corrosion processes that occur. Finally, crack growth rate testing under relevant environmental conditions was initiated.

More Details

SNF Canister Coatings for Corrosion Prevention and Mitigation (FY21 Status Report)

Knight, Andrew W.; Nation, Brendan L.; Bryan, Charles R.; Schaller, Rebecca S.

This report summarizes the current actives in FY21 related to the effort by Sandia National Laboratories to identify and test coating materials for the prevention, mitigation, and repair of spent nuclear fuel dry storage canisters against potential chloride-induced stress corrosion cracking. This work follows up on the details provided in Sandia National Laboratories FY20 report on the same topic, which provided a detailed description of the specific coating properties desired for application and implementation on spent nuclear fuel canisters, as well as provided detail into several different coatings and their applicability to coat spent nuclear fuel canisters. In FY21, Sandia National Laboratories has engaged with private industry to create a Memorandum of Understanding and established a collaborative R&D program building off the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of private industry. The resulting Memorandum of Understanding included four companies to date (Oxford Performance Materials, White Horse R&D, Luna Innovations, and Flora Coating) proposing six different coating technologies (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, silane-based polyurethane hybrid with and without a Znrich primer, and a quasi-ceramic sol-gel polyurethane hybrid) to be tested, evaluated, and optimized for their potential use for this application. This report provides a detailed description of each of the coating systems proposed by the participating industry partners. It also provides a description of the planned experimental actives to be performed by Sandia National Laboratories including physical tests, electrochemical tests, and characterization methods. These analyses will be used to identify specific ways to further improve coating technologies toward their application and implementation on spent nuclear fuel canisters. In FY21, Sandia National Laboratories began baseline testing of the base metal material in according with activities of the Memorandum of Understanding. In FY22, Sandia National Laboratories will receive coated coupons from each of the participating industry partners and begin characterization, physical, and electrochemical testing following the test plan described herein.

More Details

Isotopic fractionation as in-situ sensor of subsurface reactive flow and precursor for rock failure

Ilgen, Anastasia G.; Choens, Robert C.; Knight, Andrew W.; Harvey, Jacob A.; Martinez, Mario J.; Yoon, Hongkyu Y.; Wilson, Jennifer E.; Mills, Melissa M.; Wang, Qiaoyi W.; Gruenwald, Michael G.; Newell, Pania N.; Schuler, Louis S.; Davis, Haley J.

Greater utilization of subsurface reservoirs perturbs in-situ chemical-mechanical conditions with wide ranging consequences from decreased performance to project failure. Understanding the chemical precursors to rock deformation is critical to reducing the risks of these activities. To address this need, we investigated the coupled flow-dissolution- precipitation-adsorption reactions involving calcite and environmentally-relevant solid phases. Experimentally, we quantified (1) stable isotope fractionation processes for strontium during calcite nucleation and growth, and during reactive fluid flow; (2) consolidation behavior of calcite assemblages in the common brines. Numerically, we quantified water weakening of calcite using molecular dynamics simulations; and quantified the impact of calcite dissolution rate on macroscopic fracturing using finite element models. With microfluidic experiments and modeling, we show the effect of local flow fields on the dissolution kinetics of calcite. Taken together across a wide range of scales and methods, our studies allow us to separate the effects of reaction, flow, and transport, on calcite fracturing and the evolution of strontium isotopic signatures in the reactive fluids.

More Details

Effects of nanoconfinement and surface charge on iron adsorption on mesoporous silica

Environmental Science: Nano

Greathouse, Jeffery A.; Duncan, Tyler J.; Ilgen, Anastasia G.; Harvey, Jacob H.; Criscenti, Louise C.; Knight, Andrew W.

We present a combined molecular dynamics (MD) simulation and X-ray absorption fine structure (XAFS) spectroscopic investigation of aqueous iron adsorption on nanoconfined amorphous silica surfaces. The simulation models examine the effects of pore size, pH (surface charge), iron valency, and counter-ion (chloride or hydroxide). The simulation methods were validated by comparing the coordination environment of adsorbed iron with coordination numbers and bond lengths derived from XAFS. In the MD models, nanoconfinement effects on local iron coordination were investigated by comparing results for unconfined silica surfaces and in confined domains within 2 nm, 4 nm, and 8 nm pores. Experimentally, coordination environments of iron adsorbed onto mesoporous silica with 4 nm and 8 nm pores at pH 7.5 were investigated. The effect of pH in the MD models was included by simulating Fe(ii) adsorption onto negatively charged SiO2surfaces and Fe(iii) adsorption on neutral surfaces. The simulation results show that iron adsorption depends significantly on silica surface charge, as expected based on electrostatic interactions. Adsorption on a negatively charged surface is an order of magnitude greater than on the neutral surface, and simulated surface coverages are consistent with experimental results. Pore size effects from the MD simulations were most notable in the adsorption of Fe(ii) at deprotonated surface sites (SiOβˆ’), but adsorption trends varied with concentration and aqueous Fe speciation. The coordination environment of adsorbed iron varied significantly with the type of anion. Considerable ion pairing with hydroxide anions led to the formation of oligomeric surface complexes and aqueous species, resulting in larger iron hydroxide clusters at higher surface loadings.

More Details

Surface Sampling Techniques for the Canister Deposition Field Demonstration

Bryan, Charles R.; Knight, Andrew W.; Schaller, Rebecca S.; Durbin, S.G.; Nation, Brendan L.; Jensen, Philip J.

This report describes plans for dust sampling and analysis for the multi-year Canister Deposition Field Demonstration. The demonstration will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters, which will be stored at an ISFSI site in Advanced Horizontal Storage Modules. One canister will be unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, the size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Sampling locations on the canister surface will nominally include 25 locations, corresponding to 5 circumferential locations at each of the 5 longitudinal locations. At each sampling location, a 2x2 sampling grid (containing 4 sample cells) will be painted onto the metal surface. During each sampling campaign, two samples at each sampling location will be collected, in a specific routine to measure both periodic (yearly or bi-yearly) and cumulative deposition rates. For each sample, a wet and a dry sample will be collected. Wet samples will be analyzed to determine the composition of the soluble salt fraction and to estimate salt loading per unit area. Dry samples will be analyzed to assess particle size, morphology, mineralogy, and identity (e.g. for floral/faunal fragments). The data generated by this proposed sampling plan will provide detailed information on dust and salt aerosol deposits on spent nuclear fuel canister surfaces. The anticipated results include information regarding particle compositions, size distributions, and morphologies, in addition to particle deposition rates as a function of canister surface location, orientation, time, and temperature. The information gathered during the Canister Deposition Field Demonstration is critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking on SNF dry storage canisters

More Details

Analysis of Dust Samples Collected from an Inland ISFSI Site (''Site B'')

Knight, Andrew W.; Bryan, Charles R.

In October of 2020, dust samples were collected from the surface of spent nuclear fuel (SNF) dry storage canisters during an inspection at an inland Independent Spent Fuel Storage Installation, the second inland site at which surface deposits have been sampled. The purpose of the sampling was to assess the composition and abundance of the soluble salts present on the canister surface, information which provides a metric for potential corrosion risks. The samples were delivered to Sandia National laboratories for analysis. At Sandia, the soluble salts were leached from the dust and quantified by ion chromatography. In addition, subsamples of the dust were taken for scanning electron microscopy to determine the texture and mineralogy of the dust and salts. The results of those analyses are presented in this report.

More Details

Analysis of Dust Samples Collected from an Inland ISFSI Site (Site A)

Bryan, Charles R.; Knight, Andrew W.

In September of 2020, dust samples were collected from the surface of spent nuclear fuel (SNF) dry storage canisters during an inspection at an inland Independent Spent Fuel Storage Installation. The purpose of the sampling was to assess the composition and abundance of the soluble salts present on the canister surface, information which provides a metric for potential corrosion risks. The samples were delivered to Sandia National laboratories for analysis. At Sandia, the soluble salts were leached from the dust and quantified by ion chromatography. In addition, subsamples of the dust were taken for scanning electron microscope analysis to determine the texture and mineralogy of the dust and salts. The results of those analyses are presented in this report.

More Details

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY2020 Status Report)

Schaller, Rebecca S.; Knight, Andrew W.; Bryan, Charles R.; Nation, Brendan L.; Montoya, Timothy M.; Katona, Ryan M.

This progress report describes work performed during FY20 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY20 further defined our understanding of the potential chemical and physical environment present on canister surfaces, evaluated the relationship between the environment and the resultant corrosion that occurs, and initiated crack growth rate testing under relevant environmental conditions. In FY20, work to define dry storage canister surface environments included several tasks. First, collection of dust deposition specimens from independent spent fuel storage installation (ISFSI) site locations helped to establish a more complete understanding of the potential chemical environment formed on the canister. Second, the predicted evolution of canister surface relative humidity RH) values was estimated using ISFSI site weather data and the horizontal canister thermal model used by the SNL probabilistic SCC model. These calculations determined that for typical ISFSI weather conditions, seasalt deliquescence to produce MgCl2-rich brines could occur in less than 20 years at the coolest locations on the canister surface, and, even after nearly 300 years, conditions for NaCl deliquescence (75% RH) are not reached. This work illustrates the importance of understanding the stability of MgCl2-rich brines on the heated canister surface, and the potential impact of brine composition on corrosion processes, including pitting and stress corrosion cracking. In an additional study, the description of the canister surface environment was refined in order to define more realistic corrosion testing environments including diurnal cycles, soluble salt chemistries, and inert mineral particles. The potential impacts of these phenomena on canister corrosion are being evaluated experimentally. Finally, work over the past few years to evaluate the stability of magnesium chloride brines continued in FY20. MgCl2 degassing experiments were carried out, confirming that MgCl2 brines slowly degas HCl on heated surfaces, converting to less deliquescent magnesium hydroxychloride phases and potentially leading to brine dryout.

More Details

Corrosion-Resistant Coatings for Mitigation and Repair of Spent Nuclear Fuel Dry Storage Canisters

Knight, Andrew W.; Schaller, Rebecca S.; Bryan, Charles R.; Montoya, Timothy M.; Parey, Alana M.; Carpenter, Jacob C.; Maguire, Makeila M.

This report summarizes the results of a literature survey on coatings and surface treatments that are used to provide corrosion protection for exposed metal surfaces. The coatings are discussed in the context of being used on stainless steel spent nuclear fuel (SNF) dry storage canisters for potential prevention or repair of corrosion and stress corrosion cracking. The report summarizes the properties of different coating classes, including the mechanisms of protection, their physical properties, and modes of degradation (thermal, chemical, radiological). Also discussed are the current standard technologies for application of the coatings, including necessary surface pretreatments (degreasing, rust removal, grinding) and their effects on coating adhesion and performance. The coatings are also classified according their possible use for in situ repair; ex situ repair, requiring removal from the overpack; and ex situ prevention, or application prior to fuel loading to provide corrosion protection over the lifetime of the canister.

More Details
Results 1–25 of 60
Results 1–25 of 60