Publications

Results 4001–4200 of 96,771

Search results

Jump to search filters

Resilience Enhancements through Deep Learning Yields

Eydenberg, Michael S.; Batsch-Smith, Lisa; Bice, Charles T.; Blakely, Logan; Bynum, Michael L.; Boukouvala, Fani; Castillo, Anya; Haddad, Joshua; Hart, William E.; Jalving, Jordan; Kilwein, Zachary A.; Laird, Carl; Skolfield, Joshua K.

This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.

More Details

Hong-Ou-Mandel sensing via superradiant coupling of discrete fluorescent emitters

AVS Quantum Science

Shugayev, Roman A.; Lu, Ping; Duan, Yuhua; Buric, Michael

The Hong-Ou-Mandel (HOM) effect is a fascinating quantum phenomenon that defies classical explanation. Traditionally, remote nonlinear sources have been used to achieve coincident photons at the HOM beam splitter. Here, we suggest that the coincident emission source required for HOM interference can be created locally using superradiant near field coupled emitters positioned across the beam splitter gap. We show that sensitivity to permittivity changes in the beam splitter gap, and corresponding Fisher information can be substantially enhanced with HOM photon detection. Subsequently, we outline several strategies for integration of superradiant emitters with practical sensor systems. Taken together, these findings should pave a way for a wide array of near field HOM quantum sensors and novel quantum devices.

More Details

FY2022 Progress on Imbibition Testing in Containment Science

Kuhlman, Kristopher L.; Good, Forest T.; LaForce, Tara; Heath, Jason

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as for vapor-phase contaminant transport and/or containment of noble gases in the subsurface. In this second progress report of FY22, we present two ongoing activities related to imbibition testing on volcanic rock samples. We present the development of a new analytical solution predicting the temperature response observed during imbibition into dry samples, as discussed in our previous first progress report for FY22. We also illustrate the use of a multi-modal capillary pressure distribution to simulate both early- and late-time imbibition data collected on tuff core that can exhibit multiple pore types. These FY22 imbibition tests were conducted for an extended period (i.e., far beyond the time required for the wetting front to reach the top of the sample), which is necessary for parameter estimation and characterization of two different pore types within the samples.

More Details

PEAR Objective 3.2

Cox, Andrew E.

NTESS and its aviation security industry partners developed the Open Threat Assessment Platform (OTAP), an open-architecture platform project that provides a common set of software interfaces and data standards, for Transportation Security Administration airport screening.

More Details

Tracer Gas Model Development and Verification in PFLOTRAN

Paul, Matthew J.; Fukuyama, David E.; Leone, Rosemary C.; Nole, Michael A.; Greathouse, Jeffery A.

Tracer gases, whether they are chemical or isotopic in nature, are useful tools in examining the flow and transport of gaseous or volatile species in the underground. One application is using detection of short-lived argon and xenon radionuclides to monitor for underground nuclear explosions. However, even chemically inert species, such as the noble gases, have bene observed to exhibit non-conservative behavior when flowing through porous media containing certain materials, such as zeolites, due to gas adsorption processes. This report details the model developed, implemented, and tested in the open source and massively parallel subsurface flow and transport simulator PFLOTRAN for future use in modeling the transport of adsorbing tracer gases.

More Details

Extending in situ X-ray Temperature Diagnostics to Internal Components

Halls, Benjamin R.; Henkelis, Susan E.; Lowry, Daniel R.; Rademacher, David R.

Time-resolved X-ray thermometry is an enabling technology for measuring temperature and phase change of components. However, current diagnostic methods are limited in their ability due to the invasive nature of probes or the requirement of coatings and optical access to the component. Our proposed developments overcome these challenges by utilizing X-rays to directly measure the objects temperature. Variable-Temperature X-ray Diffraction (VT-XRD) was performed over a wide range of temperatures and diffraction angles and was performed on several materials to analyze the patterns of the bulk materials for sensitivity. "High-speed" VT-XRD was then performed for a single material over a small range of diffraction angles to see how fast the experiments could be performed, whilst still maintaining peaks sufficiently large enough for analysis.

More Details

Probabilistic Nanomagnetic Memories for Uncertain and Robust Machine Learning

Bennett, Christopher H.; Xiao, Tianyao X.; Liu, Samuel; Humphrey, Leonard; Incorvia, Jean A.; Debusschere, Bert D.; Ries, Daniel R.; Agarwal, Sapan A.

This project evaluated the use of emerging spintronic memory devices for robust and efficient variational inference schemes. Variational inference (VI) schemes, which constrain the distribution for each weight to be a Gaussian distribution with a mean and standard deviation, are a tractable method for calculating posterior distributions of weights in a Bayesian neural network such that this neural network can also be trained using the powerful backpropagation algorithm. Our project focuses on domain-wall magnetic tunnel junctions (DW-MTJs), a powerful multi-functional spintronic synapse design that can achieve low power switching while also opening the pathway towards repeatable, analog operation using fabricated notches. Our initial efforts to employ DW-MTJs as an all-in-one stochastic synapse with both a mean and standard deviation didn’t end up meeting the quality metrics for hardware-friendly VI. In the future, new device stacks and methods for expressive anisotropy modification may make this idea still possible. However, as a fall back that immediately satisfies our requirements, we invented and detailed how the combination of a DW-MTJ synapse encoding the mean and a probabilistic Bayes-MTJ device, programmed via a ferroelectric or ionically modifiable layer, can robustly and expressively implement VI. This design includes a physics-informed small circuit model, that was scaled up to perform and demonstrate rigorous uncertainty quantification applications, up to and including small convolutional networks on a grayscale image classification task, and larger (Residual) networks implementing multi-channel image classification. Lastly, as these results and ideas all depend upon the idea of an inference application where weights (spintronic memory states) remain non-volatile, the retention of these synapses for the notched case was further interrogated. These investigations revealed and emphasized the importance of both notch geometry and anisotropy modification in order to further enhance the endurance of written spintronic states. In the near future, these results will be mapped to effective predictions for room temperature and elevated operation DW-MTJ memory retention, and experimentally verified when devices become available.

More Details

Accelerating Multiscale Materials Modeling with Machine Learning

Modine, N.A.; Stephens, John A.; Swiler, Laura P.; Thompson, Aidan P.; Vogel, Dayton J.; Cangi, Attila; Feilder, Lenz; Rajamanickam, Sivasankaran R.

The focus of this project is to accelerate and transform the workflow of multiscale materials modeling by developing an integrated toolchain seamlessly combining DFT, SNAP, LAMMPS, (shown in Figure 1-1) and a machine-learning (ML) model that will more efficiently extract information from a smaller set of first-principles calculations. Our ML model enables us to accelerate first-principles data generation by interpolating existing high fidelity data, and extend the simulation scale by extrapolating high fidelity data (102 atoms) to the mesoscale (104 atoms). It encodes the underlying physics of atomic interactions on the microscopic scale by adapting a variety of ML techniques such as deep neural networks (DNNs), and graph neural networks (GNNs). We developed a new surrogate model for density functional theory using deep neural networks. The developed ML surrogate is demonstrated in a workflow to generate accurate band energies, total energies, and density of the 298K and 933K Aluminum systems. Furthermore, the models can be used to predict the quantities of interest for systems with more number of atoms than the training data set. We have demonstrated that the ML model can be used to compute the quantities of interest for systems with 100,000 Al atoms. When compared with 2000 Al system the new surrogate model is as accurate as DFT, but three orders of magnitude faster. We also explored optimal experimental design techniques to choose the training data and novel Graph Neural Networks to train on smaller data sets. These are promising methods that need to be explored in the future.

More Details

Data Fusion via Neural Network Entropy Minimization for Target Detection and Multi-Sensor Event Classification

Linville, Lisa L.; Anderson, Dylan Z.; Michalenko, Joshua J.; Garcia, Jorge A.

Broadly applicable solutions to multimodal and multisensory fusion problems across domains remain a challenge because effective solutions often require substantive domain knowledge and engineering. The chief questions that arise for data fusion are in when to share information from different data sources, and how to accomplish the integration of information. The solutions explored in this work remain agnostic to input representation and terminal decision fusion approaches by sharing information through the learning objective as a compound objective function. The objective function this work uses assumes a one-to-one learning paradigm within a one-to-many domain which allows the assumption that consistency can be enforced across the one-to-many dimension. The domains and tasks we explore in this work include multi-sensor fusion for seismic event location and multimodal hyperspectral target discrimination. We find that our domain- informed consistency objectives are challenging to implement in stable and successful learning because of intersections between inherent data complexity and practical parameter optimization. While multimodal hyperspectral target discrimination was not enhanced across a range of different experiments by the fusion strategies put forward in this work, seismic event location benefited substantially, but only for label-limited scenarios.

More Details

Acetate-based water-in-salt electrolytes (WiSE) for improved zinc battery cycling [Poster]

Dutta, Debayon; Turney, Damon; Lambert, Timothy N.; Messinger, Robert J.; Banerjee, Sanjoy

Grid scale batteries need to be inexpensive to manufacture, safe to operate, and non-toxic in composition. Zinc aqueous (alkaline) batteries hold much promise, but good cycle life and utilization of the zinc has proven difficult partly because zinc is susceptible to H2 gas evolution in KOH. Water-insalt electrolyte (WiSE) can address this shortcoming by lowering the activity of free water molecules in solution, thus reducing H2 gas evolution. In this work, we show the relevant fundamental physicochemical properties of an acetate-based WiSE to establish the practicality and performance of this class of WiSE for battery application. Research and understanding of acetate WiSE is in a nascent state, presently.

More Details

The Power of Priors: Improved Enrichment Safeguards

Shoman, Nathan; Honnold, Philip H.

International safeguards currently rely on material accountancy to verify that declared nuclear material is present and unmodified. Although effective, material accountancy for large bulk facilities can be expensive to implement due to the high precision instrumentation required to meet regulatory targets. Process monitoring has long been considered to improve material accountancy. However, effective integration of process monitoring has been met with mixed results. Given the large successes in other domains, machine learning may present a solution for process monitoring integration. Past work has shown that unsupervised approaches struggle due to measurement error. Although not studied in depth for a safeguards context, supervised approaches often have poor generalization for unseen classes of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for training, can improve the generalization of supervised approaches. Further, the underlying models needed to generate these datasets need only accurately model certain high importance features.

More Details

An Immersed Finite Element Lagrangian-Eulerian Code-Coupling Framework

Christon, Mark A.; Nanal, Narendra S.; Shen, Chen; Hensinger, David M.; Zhang, Lucy T.; Wong, Michael K.; Agelastos, Anthony M.

This report presents an assessment of immersed Eulerian-Lagrangian code-coupling techniques suitable for use in a broad range of mechanics applications. The coupling algorithm is based on an immersed finite element method that considers the Lagrangian and Eulerian overlap regions in the overall variational formulation. In this report the basic formulation details are presented followed by various aspects of the code-coupling algorithm using OpenIFEM as the Lagrangian/coupling framework. A series of representative test cases that illustrate the code-coupling algorithm are discussed. The current work provides an in-depth investigation into the immersed finite element method for the purposes of providing a rigorous coupling technique that is minimally invasive in the respective Eulerian and Lagrangian codes. A number of extensions to the base immersed finite element method have been examined. These extension include nodal and quadrature-based indicator functions, a Lagrangian volume-fraction calculation in regions of overlap, and the use of penalty constraints between the Lagrangian and Eulerian domains. A unique MPI-based coupling strategy that retains the independent MPI structure of each code has been demonstrated.

More Details

Comprehensive uncertainty quantification (UQ) for full engineering models by solving probability density function (PDF) equation

Kolla, Hemanth K.; De, Saibal D.; Jones, Reese E.; Hansen, Michael A.; Plews, Julia A.

This report details a new method for propagating parameter uncertainty (forward uncertainty quantification) in partial differential equations (PDE) based computational mechanics applications. The method provides full-field quantities of interest by solving for the joint probability density function (PDF) equations which are implied by the PDEs with uncertain parameters. Full-field uncertainty quantification enables the design of complex systems where quantities of interest, such as failure points, are not known apriori. The method, motivated by the well-known probability density function (PDF) propagation method of turbulence modeling, uses an ensemble of solutions to provide the joint PDF of desired quantities at every point in the domain. A small subset of the ensemble is computed exactly, and the remainder of the samples are computed with approximation of the driving (dynamics) term of the PDEs based on those exact solutions. Although the proposed method has commonalities with traditional interpolatory stochastic collocation methods applied directly to quantities of interest, it is distinct and exploits the parameter dependence and smoothness of the dynamics term of the governing PDEs. The efficacy of the method is demonstrated by applying it to two target problems: solid mechanics explicit dynamics with uncertain material model parameters, and reacting hypersonic fluid mechanics with uncertain chemical kinetic rate parameters. A minimally invasive implementation of the method for representative codes SPARC (reacting hypersonics) and NimbleSM (finite- element solid mechanics) and associated software details are described. For solid mechanics demonstration problems the method shows order of magnitudes improvement in accuracy over traditional stochastic collocation. For the reacting hypersonics problem, the method is implemented as a streamline integration and results show very good accuracy for the approximate sample solutions of re-entry flow past the Apollo capsule geometry at Mach 30.

More Details

Efficient approach to kinetic simulation in the inner magnetically insulated transmission line on Z

Evstatiev, Evstati G.; Hess, Mark H.

This project explores the idea of performing kinetic numerical simulations in the Z inner magnetically insulated transmission line (inner MITL) by reduced physics models such as a guiding center drift kinetic approximation for particles and electrostatic and magnetostatic approximation for the fields. The basic problem explored herein is the generation, formation, and evolution of vortices by electron space charge limited (SCL) emission. The results indicate that for relevant to Z values of peak current and pulse length, these approximations are excellent, while also providing tens to hundreds of times reduction in the computational load. The benefits could be enormous: Implementation of these reduced physics models in present particle-in-cell (PIC) codes could enable them to be routinely used for experimental design while still capturing essential non-thermal (kinetic) physics.

More Details

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Timothy D.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.

More Details

Modification of a Silicon Photomultiplier for Reduced High Temperature Dark Count Rate

Balajthy, Jon A.; Burkart, James K.; Christiansen, Joel T.; Sweany, Melinda; Udoni, Darlene M.; Weber, Thomas M.

In this work we present a novel method for improving the high-temperature performance of silicon photomultipliers (SiPMs) via focused ion beam (FIB) modification of individual microcells. The literature suggests that most of the dark count rate (DCR) in a SiPM is contributed by a small percentage (<5%) of microcells. By using a FIB to electrically deactivate this relatively small number of microcells, we believe we can greatly reduce the overall DCR of the SiPM at the expense of a small reduction in overall photodetection efficiency, thereby improving its high temperature performance. In this report we describe our methods for characterizing the SiPM to determine which individual microcells contribute the most to the DCR, preparing the SiPM for FIB, and modifying the SiPM using the FIB to deactivate the identified microcells.

More Details

Full 3D Kinetic Modeling and Quantification of Positive Streamer Evolution in an Azimuthally Swept Pin-to-Plane Wedge Geometry

Jindal, Ashish K.; Moore, Christopher H.; Fierro, Andrew S.; Hopkins, Matthew M.

Cathode-directed streamer evolution in near atmospheric air is modeled in 3D pin-to-plane geometries using a 3D kinetic Particle-In-Cell (PIC) code that simulates particle-particle collisions via the Direct Simulation Monte Carlo (DSMC) method. Due to the computational challenges associated with a complete 360° volumetric domain, a practical alternative was achieved using a wedge domain and a range of azimuthal angles was explored (5°, 15°, 30°, and 45°) to study possible effects on the streamer growth and propagation due to the finite wedge angle. A DC voltage of 6 kV is administered to a hemispherical anode of radius 100 μm, with a planar cathode held at ground potential, generating an over-volted state with an electric field of 4 MV/m across a 1500 μm gap. The domain is seeded with an initial ion and electron density of 1018 m-3 at 1 eV temperature confined to a spherical region of radius 100 μm centered at the tip of the anode. The air chemistry model [1] includes standard Townsend breakdown mechanisms (electron-neutral elastic, excitation, ionization, attachment, and detachment collision chemistry and secondary electron emission) as well as streamer mechanisms (photoionization and ion-neutral collisions) via tracking excited state neutrals which can then either quench via collisions or spontaneously emit a photon based on specific Einstein-A coefficients [2, 3]. In this work, positive streamer dynamics are formally quantified for each wedge angle in terms of electron velocity and density as temporal functions of coordinates r, Φ, and z. Applying a random plasma seed for each simulation, particles of interest are tracked with near femtosecond temporal resolution out to 1.4 ns and spatially binned. This process is repeated six times and results are averaged. Prior 2D studies have shown that the reduced electric field, E/n, can significantly impact streamer evolution [4]. We extend the analysis to 3D wedge geometries, to limit computational costs, and examine the wedge angle’s effect on streamer branching, propagation, and velocity. Results indicate that the smallest wedge angle that produced an acceptably converged solution is 30°. The potential effects that a mesh, when under-resolved with respect to the Debye length, can impart on streamer dynamics and numerical heating were not investigated, and we explicitly state here that the smallest cell size was approximately 10 times the minimum λD in the streamer channel at late times. This constraint on cell size was the result of computational limitations on total mesh count.

More Details

Strategic Petroleum Reserve Cavern Leaching Monitoring CY21

Zeitler, Todd Z.; Ross, Tonya; Valdez, Raquel L.; Maurer, Hannah G.; Hart, David B.

Th e U.S. Strategic Petroleum Reserve (SPR) is a crude oil storage system administered by the U.S. Department of Energy. The reserve consists of 60 active storage caverns located in underground salt domes spread across four sites in Louisiana and Texas, near the Gulf of Mexico. Beginning in 2016, the SPR started executing C ongressionally mandated oil sales. The configuration of the reserve, with a total capacity of greater than 700 million barrels ( MMB ) , re quires that unsaturated water (referred to herein as ?raw? water) is injected into the storage caverns to displace oil for sales , exchanges, and drawdowns . As such, oil sales will produce cavern growth to the extent that raw water contacts the salt cavern walls and dissolves (leaches) the surrounding salt before reaching brine saturation. SPR injected a total of over 45 MMB of raw water into twenty - six caverns as part of oil sales in CY21 . Leaching effects were monitored in these caverns to understand how the sales operations may impact the long - term integrity of the caverns. While frequent sonars are the most direct means to monitor changes in cavern shape, they can be resource intensive for the number of caverns involved in sales and exchanges. An interm ediate option is to model the leaching effects and see if any concerning features develop. The leaching effects were modeled here using the Sandia Solution Mining Code , SANSMIC . The modeling results indicate that leaching - induced features do not raise co ncern for the majority of the caverns, 15 of 26. Eleven caverns, BH - 107, BH - 110, BH - 112, BH - 113, BM - 109, WH - 11, WH - 112, WH - 114, BC - 17, BC - 18, and BC - 19 have features that may grow with additional leaching and should be monitored as leaching continues in th ose caverns. Additionally, BH - 114, BM - 4, and BM - 106 were identified in previous leaching reports for recommendation of monitoring. Nine caverns had pre - and post - leach sonars that were compared with SANSMIC results. Overall, SANSMIC was able to capture the leaching well. A deviation in the SANSMIC and sonar cavern shapes was observed near the cavern floor in caverns with significant floor rise, a process not captured by SANSMIC. These results validate that SANSMIC continues to serve as a useful tool for mon itoring changes in cavern shape due to leaching effects related to sales and exchanges.

More Details

Sensitivity Analysis for Solutions to Heterogeneous Nonlocal Systems. Theoretical and Numerical Studies

Journal of Peridynamics and Nonlocal Modeling

Buczkowski, Nicole E.; Foss, Mikil D.; Parks, Michael L.; Radu, Petronela

The paper presents a collection of results on continuous dependence for solutions to nonlocal problems under perturbations of data and system parameters. The integral operators appearing in the systems capture interactions via heterogeneous kernels that exhibit different types of weak singularities, space dependence, even regions of zero-interaction. The stability results showcase explicit bounds involving the measure of the domain and of the interaction collar size, nonlocal Poincaré constant, and other parameters. In the nonlinear setting, the bounds quantify in different Lp norms the sensitivity of solutions under different nonlinearity profiles. The results are validated by numerical simulations showcasing discontinuous solutions, varying horizons of interactions, and symmetric and heterogeneous kernels.

More Details

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica R.; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah M.; Brow, Richard; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, Scott J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details

MelMACCS User Guide - V.4.0.0

Author, No

The MelMACCS User Guide is intended to assist analysts in how to use the MelMACCS application to create an interface file that can be used in a MACCS calculation. MelMACCS combines MELCOR results, in the form of a MELCOR plot file, with user input. This information is used to create a MelMACCS output file that is in a format compatible with MACCS. It can then be imported as an input file in WinMACCS and used for MACCS calculations.

More Details

Linear Seismic Source Equivalents in 3D Nonlinear Models: Effects of Embedded Small-Scale, Near-Source Structures

Preston, Leiph A.; Eliassi, Mehdi E.

Gaining a proper understanding of how Earth structure and other near-source properties affect estimates of explosion yield is important to the nonproliferation mission. The yields of explosion sources are often based on seismic moment or waveform amplitudes. Quantifying how the seismic waveforms or estimates of the source characteristics derived from those waveforms are influenced by natural or man-made structures within the near-source region, where the wavefield behaves nonlinearly, is required to understand the full range of uncertainty in those yield estimates. We simulate tamped chemical explosions using a nonlinear, shock physics code and couple the ground motions beyond the elastic radius to a linear elastic, full waveform seismic simulation algorithm through 3D media. In order to isolate the effects of simple small-scale 3D structures on the seismic wavefield and linear seismic source estimates, we embed spheres and cylinders close to the fully- tamped source location within an otherwise homogenous half-space. The 3 m diameters spheres, given their small size compared to the predominate wavelengths investigated, not surprisingly are virtually invisible with only negligible perturbations to the far-field waveforms and resultant seismic source time functions. Similarly, the 11 m diameter basalt sphere has a larger, but still relatively minor impact on the wavefield. However, the 11 m diameter air-filled sphere has the largest impact on both waveforms and the estimated seismic moment of any of the investigated cases with a reduction of ~25% compared to the tamped moment. This significant reduction is likely due in large part to the cavity collapsing from the shock instead of being solely due to diffraction effects . Although the cylinders have the same diameters as the 3 m spheres, their length of interaction with the wavefield produces noticeable changes to the seismic waveforms and estimated source terms with reductions in the peak seismic moment on the order of 10%. Both the cylinders and 11 m diameter spheres generate strong shear waves that appear to emanate from body force sources.

More Details

DPC Direct Disposal Postclosure Thermal Modeling

Chang, Kyung W.; Jones, Philip G.

Performance of geologic radioactive waste repositories depends on near-field and far-field processes, including km-scale flow and transport in engineered and natural barriers, that may require simulations of up to 1 M years of regulatory period. For a relatively short time span (less than 1000 years), the thermohydro-mechanical-chemical (THMC) coupled processes caused by heat from the waste package will influence near-field multiphase flow, chemical/reactive transport, and mechanical behaviors in the repository system. This study integrates the heat-driven perturbations in thermo-hydro-mechanical characteristics into thermo-hydro-chemical simulations using PFLOTRAN to reduce dimensionality and improve computational efficiency by implementing functions of stress-dependent permeability and saturation-temperature-dependent thermal conductivity. These process couplings are developed for spent nuclear fuel in dual-purpose canisters in two different hypothetical repositories: a shale repository and a salt repository.

More Details

Sierra/SD - How To Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Joshi, Sidharth S.; Laros, James H.; Chen, Mark J.; Pepe, Justin P.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

How sheath properties change with gas pressure: modeling and simulation

Plasma Sources Science and Technology

Beving, Lucas P.; Hopkins, Matthew M.; Baalrud, Scott D.

Particle-in-cell simulations are used to study how neutral pressure influences plasma properties at the sheath edge. The high rate of ion–neutral collisions at pressures above several mTorr are found to cause a decrease in the ion velocity at the sheath edge (collisional Bohm criterion), a decrease in the edge-to-center density ratio (hl factor), and an increase in the sheath width and sheath potential drop. A comparison with existing analytic models generally indicates favorable agreement, but with some distinctions. One is that models for the hl factor need to be made consistent with the collisional Bohm criterion. With this and similar corrections, a comprehensive fluid-based model of the plasma boundary transition is constructed that compares well with the simulation results.

More Details

Interactions of Water with Pristine and Defective MoS2

Langmuir

Bobbitt, Nathaniel S.; Chandross, M.

Molybdenum disulfide (MoS2) is a lamellar solid lubricant often used in aerospace applications because of its extremely low friction coefficient (∼0.01) in inert environments. The lubrication performance of MoS2 is significantly impaired by exposure to even small amounts of water and oxygen, and the mechanisms behind this remain poorly understood. We use density functional theory calculations to study the binding of water on MoS2 sheets with and without defects. In general, we find that pristine MoS2 is slightly hydrophilic but that defects greatly increase the binding affinity for water. Intercalated water disrupts the crystal structure of bulk MoS2 due to the limited space between lamellae (∼3.4 Å), and this leads to generally unfavorable adsorption, except in the cases where water molecules are located on the sites of sulfur vacancies. We also find that water adsorption is more favorable directly below a surface layer of MoS2 compared to in the bulk.

More Details

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

SAE Technical Papers

Kim, Namho K.; Singh, Eshan S.; Sjoberg, Carl M.; Saggese, Chiara; Matsubara, Naoyoshi; Yokoo, Nozomi; Nakata, Koichi

Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO. Experiments were conducted to measure the responses of KL-CA50 and trace-autoignition CA50, the latter being indicative of CA50 at which end-gas autoignition starts to become measurable from the apparent heat-release rate. Chemical-kinetics simulations were conducted to reveal the role of NO for end-gas autoignition, with a specific focus on sequential autoignition in a thermally stratified end-gas. The simulation results reveal that the magnitude of low-temperature heat release (LTHR) generally increases with NO. However, the relative importance of NO for enhancing LTHR diminishes when the LTHR inherent to a fuel's chemistry is strong, such as at lower temperatures in a thermal boundary layer. This rendered more uniform LTHR within a hypothetical thermal boundary and led to a more sequential (i.e. slower) autoignition event. It was also revealed that a change in compression ratio influences the importance of intermediate-temperature heat release (ITHR) due to changes of the temperature-pressure history of the end-gas. Together with the condition where end-gas autoignition occurs more sequentially, the shorter time spent in LTHR and ITHR regime can counter the increase in autoignition reactivity at high NO levels and allow KL-CA50 to advance.

More Details

Soot-particle core-shell and fractal structures from small-angle X-ray scattering measurements in a flame

Carbon

Michelsen, Hope A.; Campbell, Matthew F.; Johansson, K.O.; Tran, Ich C.; Schrader, Paul E.; Bambha, Ray B.; Cenker, Emre; Hammons, Joshua A.; Zhu, Chenhui; Schaible, Eric; Van Buuren, Anthony

We have characterized soot particles measured in situ in a laminar co-flow ethylene-air diffusion flame using small-angle X-ray scattering (SAXS). The analysis includes temperature measurements made with coherent anti-Stokes Raman spectroscopy (CARS) and complements soot volume-fraction and maturity measurements made with laser-induced incandescence (LII). We compared the results of fits to the SAXS measurements using a unified model and a fractal core-shell model. Power-law parameters yielded by the unified model indicate that aggregates of primary particles are in the mass-fractal regime, whereas the primary particles are in the surface-fractal regime in the middle of the flame. Higher and lower in the flame, the primary-particle power-law parameter approaches 4, suggesting smooth primary particles. These trends are consistent with fits using the fractal core-shell model, which indicate that particles have an established core-shell structure in the middle of the flame and are internally homogeneous at higher and lower heights in the flame. Primary-particle size distributions derived using the fractal core-shell model demonstrate excellent agreement with distributions inferred from transmission electron microscopy (TEM) images in the middle of the flame. Higher in the flame, a second small mode appears in the size distributions, suggesting particle fragmentation during oxidation. Surface oxidation would explain (1) aggregate fragmentation and (2) loss of core-shell structure leading to smoother primary-particle surfaces by removal of carbon overlayers. SAXS measurements are much more sensitive to incipient and young soot particles than LII and demonstrate significant volume fraction from particles low in the flame where the LII signal is negligible.

More Details

Resolving the Martensitic Transformation in Q&P Steels In-Situ at Dynamic Strain Rates Using Synchrotron X-ray Diffraction

Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science

Finfrock, Christopher B.; Ellyson, Benjamin; Becker, C.G.; Copley, John; Fezzaa, Kamel; Parab, Niranjan; Sun, Tao; Kirk, Cody; Chen, Weinong; Clarke, Amy; Clarke, Kester

Herein the dynamic deformation response of two quenching and partitioning (Q&P) steels was investigated using a high strain rate tension pressure bar and in-situ synchrotron radiography and diffraction. This allowed for concurrent measurements of the martensitic transformation, the elastic strains/stresses on the martensite and ferrite, and the bulk mechanical behavior. The steel with the greater fraction of ferrite exhibited greater ductility and lower strength, suggesting that dislocation slip in ferrite enhanced the deformability. Meanwhile, the kinetics of the martensitic transformation appeared similar for both steels, although the steel with a greater ferrite fraction retained more austenite in the neck after fracture.

More Details

Sierra/SD: Verification Test Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Timing based clustering in the Northern Finland Birth Cohorts 1966 and 1986 suggests two new patterns for childhood BMI curve [Poster]

Tucker, James D.; Heiskala, Anni; Sillanpaa, Mikko; Sebert, Sylvain

Childhood body mass index (BMI) is a widely used measure of adiposity in children (<18 years of age). Children grow with individual tempo and individuals of the same age, or of the same BMI, might be in different phases in their individual growth curves. Variability between different childhood BMI curves can be separated in two components: phase variability (x-axis; time) and amplitude variability (y-axis; BMI). Phase variability can be thought of arising from differences in maturational age between individuals. This is related to the timing of peaks and valleys in a child’s BMI curve.

More Details

Analysis of core asymmetries in inertial confinement fusion implosions using three-dimensional hot-spot reconstruction

Physics of Plasmas

Woo, K.M.; Betti, R.; Thomas, C.A.; Stoeckl, C.; Churnetski, K.; Forrest, C.J.; Mohamed, Z.L.; Zirps, B.; Regan, S.P.; Collins, T.J.B.; Theobald, W.; Shah, R.C.; Mannion, Owen M.; Patel, D.; Cao, D.; Knauer, J.P.; Glebov, V.Y.; Goncharov, V.N.; Bahukutumbi, Radha; Rinderknecht, H.G.; Epstein, R.; Gopalaswamy, V.; Marshall, F.J.; Ivancic, S.T.; Campbell, E.M.

Three-dimensional effects play a crucial role during the hot-spot formation in inertial confinement fusion (ICF) implosions. A data analysis technique for 3D hot-spot reconstruction from experimental observables has been developed to characterize the effects of low modes on 3D hot-spot formations. In nuclear measurements, the effective flow direction, governed by the maximum eigenvalue in the velocity variance of apparent ion temperatures, has been found to agree with the measured hot-spot flows for implosions dominated by mode ℓ = 1. Asymmetries in areal-density (ρR) measurements were found to be characterized by a unique cosine variation along the hot-spot flow axis. In x-ray images, a 3D hot-spot x-ray emission tomography method was developed to reconstruct the 3D hot-spot plasma emissivity using a generalized spherical-harmonic Gaussian function. The gradient-descent algorithm was used to optimize the mapping between the projections from the 3D hot-spot emission model and the measured x-ray images along multiple views. Furthermore, this work establishes a platform to analyze 3D low-mode core asymmetries in ICF.

More Details

Trajectory design via unsupervised probabilistic learning on optimal manifolds

Data-Centric Engineering

Safta, Cosmin S.; Sparapany, Michael J.; Grant, Michael J.; Najm, H.N.

This article illustrates the use of unsupervised probabilistic learning techniques for the analysis of planetary reentry trajectories. A three-degree-of-freedom model was employed to generate optimal trajectories that comprise the training datasets. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. We find that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. Using the diffusion coordinates on the graph of training samples, the probabilistic framework subsequently augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path planning algorithm. In this framework, the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-Time.

More Details

MOD-Plan: Multi-Objective Decision Planning Framework for Electric Grid Resilience, Equity, and Decarbonization [Slides]

Pierre, Brian J.; Broderick, Robert J.; Demenno, Mercy; Paladino, Joseph; Yoshimura, Jennifer

Traditionally electric grid planning strives to maintain safe, reliable, efficient, and affordable service for current and future customers. As policies, social preferences, and the threat landscape evolve, additional considerations for power system planners are emerging, including decarbonization, resilience, and energy equity and justice. The MOD-Plan framework leverages and extends prior work to provide a framework for integrating incorporating resilience, equity, and decarbonization into integrated distribution system planning.

More Details

Dramatic Enhancement of Rare-Earth Metal-Organic Framework Stability Via Metal Cluster Fluorination

JACS Au

Christian, Matthew S.; Fritzsching, Keith F.; Harvey, Jacob H.; Sava Gallis, Dorina F.; Nenoff, T.M.; Rimsza, Jessica R.

Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

More Details

3D Simulations Capture the Persistent Low-Mode Asymmetries Evident in Laser-Direct-Drive Implosions on OMEGA

Physical Review Letters

Colaitis, Arnaud; Turnbull, D.P.; Igumenschev, I.V.; Edgell, D.; Shah, R.C.; Mannion, Owen M.; Stoeckl, C.; Jacob-Perkins, D.; Shvydky, A.; Janezic, R.; Kalb, A.; Cao, D.; Forrest, C.J.; Kwiatkowski, J.; Regan, S.; Theobald, W.; Goncharov, V.N.; Froula, D.H.

Spherical implosions in Inertial Confinement Fusion (ICF) are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelengths) perturbations is a key milestone to improving implosion performances. Here, we present the first 3-D radiation-hydrodynamic simulations of directly driven ICF implosions with an inline package for polarized Crossed-Beam Energy Transfer (CBET). Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized CBET contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset and asymmetry from polarized CBET degrade yields by more than 40%. The effectiveness of two mitigation strategies for low-modes is explored.

More Details

Measuring sub-surface spatially varying thermal conductivity of silicon implanted with krypton

Journal of Applied Physics

Pfeifer, Thomas W.; Tomko, John A.; Hoglund, Eric; Scott, Ethan A.; Hattar, Khalid M.; Huynh, Kenny; Liao, Michael; Goorsky, Mark; Hopkins, Patrick E.

The thermal properties of semiconductors following exposure to ion irradiation are of great interest for the cooling of electronic devices; however, gradients in composition and structure due to irradiation often make the measurement difficult. Furthermore, the nature of spatial variations in thermal resistances due to spatially varying ion irradiation damage is not well understood. In this work, we develop an advancement in the analysis of time-domain thermoreflectance to account for spatially varying thermal conductivity in a material resulting from a spatial distribution of defects. We then use this method to measure the near-surface (≤1 μm) thermal conductivity of silicon wafers irradiated with Kr+ ions, which has an approximate Gaussian distribution centered 260 nm into the sample. Our numerical analysis presented here allows for the spatial gradient of thermal conductivity to be extracted via what is fundamentally a volumetric measurement technique. We validate our findings via transmission electron microscopy, which is able to confirm the spatial variation of the sub-surface silicon structure, and provide additional insight into the local structure resulting from the effects of ion bombardment. Thermal measurements found the ion stopping region to have a nearly 50 × reduction in thermal conductivity as compared to pristine silicon, while TEM showed the region was not fully amorphized. Our results suggest this drastic reduction in silicon thermal conductivity is primarily driven by structural defects in crystalline regions along with boundary scattering between amorphous and crystalline regions, with a negligible contribution being due to implanted krypton ions themselves.

More Details

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)

Swiler, Laura P.; Basurto, Eduardo B.; Brooks, Dusty M.; Eckert, Aubrey C.; Leone, Rosemary C.; Mariner, Paul M.; Portone, Teresa P.; Laros, James H.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.

More Details

DOE Packaging Certification Program Engineering Class Demonstration Tests

Rivera, Wayne G.; Martinez, Marissa M.

On Thursday August 11, 2022, a series of explosive demonstration tests were conducted at the Sandia National Laboratories 9920 Test Complex for the 2022 DOE Packaging Certification Program Explosives Engineering class. Class participants included both SNL engineering student interns as well as SNL and LANL staff members. The test series was designed by the class instructor, W. Gary Rivera Org. 6626, and 9920 site test engineer, Marissa Martinez Org. 6648, with help from Michelle Chatter Org 6514 and Luke Gilbert Org 6815.

More Details

Quantification of Aerosol Transmission through Stress Corrosion Crack-Like Geometries

Jones, Philip A.; Pulido, Ramon P.; Perales, Adrian G.; Durbin, S.G.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using more significant backfill pressures in the canister, up to approximately 800 kPa. This pressure differential offers a relatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.86 mm (0.349 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to add to previous testing that characterized SCCs under well-controlled boundary conditions through the inclusion of testing improvements that establish initial conditions in a more consistent way. These ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.

More Details

Modeling the viscoplastic behavior of a semicrystalline polymer

International Journal of Solids and Structures

Cundiff, Kenneth N.; Ayoub, Georges; Benzerga, Amine A.

In this study, a complex constitutive relation is identified using inverse modeling with the nominal mechanical response as sole experimental input. The methodology is illustrated for a semicrystalline thermoplastic in the presence of strain localization at finite deformations. The experimental database includes cylindrical tensile bars, compression pins and round notched bars loaded at strain rates spanning up to five decades and temperatures below and above Tg. The data is organized into a calibration set and a validation set. The response of tensile specimens is determined using finite element analyses and a two-phase constitutive relation for semicrystalline polymers that accounts for temperature- and rate-sensitive plastic flow, pressure-sensitivity, small-strain softening and large-strain orientational hardening of the amorphous phase, along with the evolution of crystallinity. The large number of constitutive parameters is identified using an optimization tool coupled with the finite element solver and the calibration set from experiments. The methodology is shown to be successful in predicting the response of round notched bars and replicating the effects of temperature and strain rate on the severity of necking in tensile bars. The proposed model identification strategy is both simple and effective in comparison with other elaborate methods that attempt to access intrinsic behavior directly from high-fidelity experimental measurements.

More Details

Islet: interpolation semi-Lagrangian element-based transport

Geoscientific Model Development

Bradley, Andrew M.; Bosler, Peter A.; Guba, Oksana G.

Advection of trace species, or tracers, also called tracer transport, in models of the atmosphere and other physical domains is an important and potentially computationally expensive part of a model's dynamical core. Semi-Lagrangian (SL) advection methods are efficient because they permit a time step much larger than the advective stability limit for explicit Eulerian methods without requiring the solution of a globally coupled system of equations as implicit Eulerian methods do. Thus, to reduce the computational expense of tracer transport, dynamical cores often use SL methods to advect tracers. The class of interpolation semi-Lagrangian (ISL) methods contains potentially extremely efficient SL methods. We describe a finite-element ISL transport method that we call the interpolation semi-Lagrangian element-based transport (Islet) method, such as for use with atmosphere models discretized using the spectral element method. The Islet method uses three grids that share an element grid: a dynamics grid supporting, for example, the Gauss-Legendre-Lobatto basis of degree three; a physics parameterizations grid with a configurable number of finite-volume subcells per element; and a tracer grid supporting use of Islet bases with particular basis again configurable. This method provides extremely accurate tracer transport and excellent diagnostic values in a number of verification problems.

More Details

Hydrated Anions: From Clusters to Bulk Solution with Quasi-Chemical Theory

Accounts of Chemical Research

Gomez, Diego T.; Pratt, Lawrence R.; Asthagiri, Dilipkumar N.; Rempe, Susan R.

ConspectusThe interactions of hydrated ions with molecular and macromolecular solution and interface partners are strong on a chemical energy scale. Here, we recount the foremost ab initio theory for the evaluation of the hydration free energies of ions, namely, quasi-chemical theory (QCT). We focus on anions, particularly halides but also the hydroxide anion, because they have been outstanding challenges for all theories. For example, this work supports understanding the high selectivity for F-over Cl-in fluoride-selective ion channels despite the identical charge and the size similarity of these ions. QCT is built by the identification of inner-shell clusters, separate treatment of those clusters, and then the integration of those results into the broader-scale solution environment. Recent work has focused on a close comparison with mass-spectrometric measurements of ion-hydration equilibria. We delineate how ab initio molecular dynamics (AIMD) calculations on ion-hydration clusters, elementary statistical thermodynamics, and electronic structure calculations on cluster structures sampled from the AIMD calculations obtain just the free energies extracted from the cluster experiments. That theory-experiment comparison has not been attempted before the work discussed here, but the agreement is excellent with moderate computational effort. This agreement reinforces both theory and experiment and provides a numerically accurate inner-shell contribution to QCT. The inner-shell complexes involving heavier halides display strikingly asymmetric hydration clusters. Asymmetric hydration structures can be problematic for the evaluation of the QCT outer-shell contribution with the polarizable continuum model (PCM). Nevertheless, QCT provides a favorable setting for the exploitation of PCM when the inner-shell material shields the ion from the outer solution environment. For the more asymmetrically hydrated, and thus less effectively shielded, heavier halide ions clustered with waters, the PCM is less satisfactory. We therefore investigate an inverse procedure in which the inner-shell structures are sampled from readily available AIMD calculations on the bulk solutions. This inverse procedure is a remarkable improvement; our final results are in close agreement with a standard tabulation of hydration free energies, and the final composite results are independent of the coordination number on the chemical energy scale of relevance, as they should be. Finally, a comparison of anion hydration structure in clusters and bulk solutions from AIMD simulations emphasize some differences: the asymmetries of bulk solution inner-shell structures are moderated compared with clusters but are still present, and inner hydration shells fill to slightly higher average coordination numbers in bulk solution than in clusters.

More Details

Electronic structure of α-RuCl3 by fixed-node and fixed-phase diffusion Monte Carlo methods

Physical Review. B

Annaberdiyev, Abdulgani; Melton, Cody A.; Wang, Guangming; Mitas, Lubos

Layered material α-RuCl3 has caught wide attention due to its possible realization of Kitaev's spin liquid and its electronic structure that involves the interplay of electron-electron correlations and spin-orbit effects. Several DFT+U studies have suggested that both electron-electron correlations and spin-orbit effects are crucial for accurately describing the band gap. This work studies the importance of these two effects using fixed-node and fixed-phase diffusion Monte Carlo calculations both in spin-averaged and explicit spin-orbit formalisms. In the latter, the Slater-Jastrow trial function is constructed from two-component spin orbitals using our recent quantum Monte Carlo (QMC) developments and thoroughly tested effective core potentials. Our results show that the gap in the ideal crystal is already accurately described by the spin-averaged case, with the dominant role being played by the magnetic ground state with significant exchange and electron correlation effects. We find qualitative agreement between hybrid DFT, DFT+U, and QMC. In addition, QMC results agree very well with available experiments, and we identify the values of exact Fock exchange mixing that provide comparable gaps. Explicit spin-orbit QMC calculations reveal that the effect of spin-orbit coupling on the gap is minor, of the order of 0.2 eV, which corresponds to the strength of the spin orbit of the Ru atom.

More Details

Friction stir welding and self-ion irradiation effects on microstructure and mechanical properties changes within oxide dispersion strengthened steel MA956

Journal of Nuclear Materials

Getto, E.; Johnson, M.; Maughan, M.; Nathan, N.; Mcmahan, J.; Baker, B.; Knipling, K.; Briggs, S.; Hattar, Khalid M.; Swenson, M.J.

The joining process for oxide dispersion strengthened (ODS) alloys remains a key challenge facing the nuclear community. The microstructure and mechanical properties were characterized in the base material and friction stir welded ODS MA956 irradiated with 5 MeV Fe2+ ions from 400 to 500°C up to 25 dpa. Nanoindentation was performed to assess changes in hardness and yield stress, and the dispersed barrier hardening (DBH) model was applied to described results. A combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) were used to assess evolution of the microstructure including dispersoids, network dislocations and dislocation loops, nanoclusters, and solid solution concentrations. Overall, softening was observed as a result of increased dose, which was exacerbated at 500°C. The formation and coarsening of new dispersoids was noted while nanoclusters tended to dissolve in the base material, and were not observed in the stir zone. Solute nanocluster evolution was identified as a primary driver of the changes in mechanical properties.

More Details

Optimization of gold germanium (Au0.17Ge0.83) thin films for high sensitivity resistance thermometry

Journal of Applied Physics

Scott, Ethan A.; Smyth, Christopher M.; Singh, Manish K.; Lu, Tzu-Ming L.; Sharma, Peter A.; Pete, Douglas V.; Watt, John; Harris, Charles T.

Gold-germanium (Au xGe 1 - x) solid solutions have been demonstrated as highly sensitive thin film thermometers for cryogenic applications. However, little is known regarding the performance of the films for thicknesses less than 100 nm. In response, we report on the resistivity and temperature coefficient of resistance (TCR) for sputtered films with thicknesses ranging from 10 to 100 nm and annealed at temperatures from 22 to 200 °C. The analysis is focused upon composition x = 0.17, which demonstrates a strong temperature sensitivity over a broad range. The thinnest films are found to provide an enhancement in TCR, which approaches 20% K - 1 at 10 K. Furthermore, reduced anneal temperatures are required to crystallize the Ge matrix and achieve a maximum TCR for films of reduced thickness. These features favor the application of ultra-thin films as high-sensitivity, on-device thermometers in micro- and nanolectromechanical systems.

More Details

Energy dispersive x-ray diffraction of luminescent powders: A complement to visible phosphor thermometry

Journal of Applied Physics

Hansen, Linda E.; Winters, Caroline W.; Westphal, Eric R.; Kastengren, A.L.

Energy-dispersive x-ray diffraction of thermographic phosphors has been explored as a complementary temperature diagnostic to visible phosphor thermometry in environments where the temperature-dependent optical luminescence of the phosphors is occluded. Powder phosphor samples were heated from ambient to 300 °C in incremental steps and probed with polychromatic synchrotron x rays; scattered photons were collected at a fixed diffraction angle of 3.9 °. Crystal structure, lattice parameters, and coefficients of thermal expansion were calculated from the diffraction data. Of the several phosphors surveyed, YAG:Dy, ZnO:Ga, and GOS:Tb were found to be excellent candidates for diffraction thermometry due to their strong, distinct diffraction peaks that shift in a repeatable and linear manner with temperature.

More Details

Validation of material models for puncture of 7075-T651 aluminum plate

International Journal of Solids and Structures

Corona, Edmundo C.; Spletzer, Matthew; Lester, Brian T.; Fietek, Carter J.

Plate puncture simulations are challenging computational tasks that require advanced material models including high strain rate and thermal-mechanical effects on both deformation and failure, plus finite element techniques capable of representing large deformations and material failure. The focus of this work is on the material issues, which require large sets of experiments, flexible material models and challenging calibration procedures. In this study, we consider the puncture of 12.7 mm thick, 7075-T651 aluminum alloy plates by a cylindrical punch with a hemispherical nose and diameter of 12.7 mm. The plasticity and ductile failure models were isotropic with calibration data obtained from uniaxial tension tests at different temperatures and strain rates plus quasi-static notched tension tests and shear-dominated tests described here. Sixteen puncture experiments were conducted to identify the threshold penetration energy, mode of puncture and punch acceleration during impact, The punch was mounted on a 139 kg mass and dropped on the plates with different impact speeds. Since the mass was the same in all tests, the quantity of interest was the impact speed. The axis and velocity of the punch were perpendicular to the plate surface. The mean threshold punch speed was 3.05 m/s, and the mode of failure was plugging by thermal-mechanical shear banding accompanied by scabbing fragments. Application of the material models in simulations of the tests yielded accurate estimates of the threshold puncture speed and of the mode of failure. Time histories of the punch acceleration compared well between simulation and test. Remarkably, the success of the simulations occurred in spite of even the smallest element used being larger than the width of the shear bands.

More Details

Critical Scaling of Solid Fragmentation at Quasistatic and Finite Strain Rates

Physical Review Letters

Clemmer, Joel T.; Robbins, Mark O.

Using two-dimensional simulations of sheared, brittle solids, we characterize the resulting fragmentation and explore its underlying critical nature. Under quasistatic loading, a power-law distribution of fragment masses emerges after fracture which grows with increasing strain. With increasing strain rate, the maximum size of a grain decreases and a shallower distribution is produced. We propose a scaling theory for distributions based on a fractal scaling of the largest mass with system size in the quasistatic limit or with a correlation length that diverges as a power of rate in the finite-rate limit. Critical exponents are measured using finite-size scaling techniques.

More Details

Corrosion-Resistant Coatings on Spent Nuclear Fuel Canisters to Mitigate and Repair Potential Stress Corrosion Cracking (FY22 Status)

Knight, Andrew W.; Nation, Brendan L.; Maguire, Makeila M.; Schaller, Rebecca S.; Bryan, Charles R.

This report summarizes the activities performed by Sandia National Laboratories in FY22 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports in FY20 and FY21 on the same topic. The previous work detailed the specific coating properties desired for application and implementation to spent nuclear fuel canisters (FY20) and identified several potential coatings for evaluation (FY21). In FY22, Sandia National Laboratories, in collaboration with four industry partners through a Memorandum of Understanding, started evaluating the physical, mechanical, and corrosion-resistance properties of 6 different coating systems (11 total coating variants) to develop a baseline understanding of the viability of each coating type for use to prevent, mitigate, and/or repair potential stress corrosion on cracking on spent nuclear fuel canisters. This collaborative R&D program leverages the analytical and laboratory capabilities at Sandia National Laboratories and the material design and synthesis capabilities of the industry collaborators. The coating systems include organic (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and hybrid systems in conjuncture with a Zn-rich primer. These coatings were applied to stainless steel coupons (the same coupons were supplied to all vendors by SNL for direct comparison) and have undergone several physical, mechanical, and electrochemical tests. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters, and also to identify specific needs for further optimization of coating technologies for their application on spent nuclear fuel canisters. In FY22, Sandia National Laboratories performed baseline testing and atmospheric exposure tests of the coating samples supplied by the vendors in accordance with the scope of work defined in the Memorandum of Understanding. In FY23, Sandia National Laboratories will continue evaluating coating performance with a focus on thermal and radiolytic stability.

More Details

Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture

ACS Infectious Diseases

Aiosa, Nicole; Sinha, Anupama S.; Jaiyesimi, Olakunle A.; Da Silva, Ricardo R.; Branda, Steven B.; Garg, Neha

The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.

More Details

Multifidelity DRAM Simulation in SST [Poster]

Lavin, Patrick; Lynch, Ryan; Young, Jeffrey; Vuduc, Richard

We will always want to speed up simulation. While architects are able to pick between levels of detail when designing simulation, we will find further speed-up if we can adjust the level of detail during simulation, depending on the behavior of the simulated components. We create a simple fixed-latency model for each phase. On the first execution of a phase, we record the average latency of accesses. On subsequent executions, we skip DRAMSin3 and send the response back using the average latency.

More Details

Induced Superconducting Pairing in Integer Quantum Hall Edge States

Nano Letters

Hatefipour, Mehdi; Pour; Cuozzo, Joseph J.; Kanter, Jesse; Strickland, William M.; Allemang, Christopher R.; Lu, Tzu-Ming L.; Rossi, Enrico; Shabani, Javad

Indium arsenide (InAs) near surface quantum wells (QWs) are promising for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the ones in the superconductor. In this work, we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance, consistent with a very high Andreev conversion. We analyze the experimental data using the Landauer-Büttiker formalism, generalized to allow for Andreev reflection processes. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.

More Details

The DARPA SEARCHLIGHT Dataset of Application Network Traffic

ACM International Conference Proceeding Series

Ardi, Calvin; Aubry, Connor; Kocoloski, Brian; Deangelis, Dave; Hussain, Alefiya; Troglia, Matthew; Schwab, Stephen

Researchers are in constant need of reliable data to develop and evaluate AI/ML methods for networks and cybersecurity. While Internet measurements can provide realistic data, such datasets lack ground truth about application flows. We present a ~750GB dataset that includes ~2000 systematically conducted experiments and the resulting packet captures with video streaming, video teleconferencing, and cloud-based document editing applications. This curated and labeled dataset has bidirectional and encrypted traffic with complete ground truth that can be widely used for assessments and evaluation of AI/ML algorithms.

More Details

Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics

ACM International Conference Proceeding Series

Thorpe, Jamie T.; Swiler, Laura P.; Hanson, Seth T.; Cruz, Gerardo C.; Tarman, Thomas D.; Rollins, Trevor; Debusschere, Bert D.

Virtual machine emulation environments provide ideal testbeds for cybersecurity evaluations because they run real software binaries in a scalable, offline test setting that is suitable for assessing the impacts of software security flaws on the system. Verification of such emulations determines whether the environment is working as intended. Verification can focus on various aspects such as timing realism, traffic realism, and resource realism. In this paper, we study resource realism and issues associated with virtual machine resource utilization. We examine telemetry metrics gathered from a series of structured experiments which involve large numbers of parallel emulations meant to oversubscribe resources at some point. We present an approach to use telemetry metrics for emulation verification, and we demonstrate this approach on two cyber scenarios. Descriptions of the experimental configurations are provided along with a detailed discussion of statistical tests used to compare telemetry metrics. Results demonstrate the potential for a structured experimental framework, combined with statistical analysis of telemetry metrics, to support emulation verification. We conclude with comments on generalizability and potential future work.

More Details

Impact of Radiation on the Electronic Structure of MoS2

Mishra, Rishi M.

Electrons in a semiconductor occupy states within certain energy ranges, called energy bands. The position of the Fermi level with respect to these energy bands determines the charge carrier type of the semiconductor. Molybdenum disulfide (MoS2) is a two-dimensional, n-type semiconductor with potential applications in flexible electronics, transparent electronics, and optoelectronics. Electronic devices containing MoS2 could be used in environments where radiation affects device performance. Thus, it is important to determine the impact of radiation on MoS2. A one-molecule-thick layer of MoS2 (monolayer) and a two-molecule-thick layer of MoS2 (bilayer) were placed onto different areas of a gold (Au) substrate containing 1.2-µm-deep holes. The MoS2 was suspended over these holes but supported by the Au elsewhere on the substrate. This sample configuration was used to determine the effect of He+ radiation on the electronic properties of the suspended MoS2 and the Au-supported MoS2. The MoS2 was irradiated by He+ ions in two stages. The energy bands of the MoS2 were measured with respect to the Fermi level via photoelectron emission microscopy before irradiation and after each irradiation stage. From each measurement, the charge carrier type of the MoS2 after the corresponding irradiation stage was determined. The Fermi levels of the suspended monolayer and bilayer decreased by ≈0.15 eV with respect to the bands during the first irradiation stage During the second irradiation stage, however, the Fermi levels didn’t change significantly. This lack of change supports the existence of a radiation threshold, above which the electronic properties of suspended MoS2 remain the same. The Fermi levels of the supported monolayer and bilayer increased over the cumulative irradiation and didn’t show evidence of a threshold. Thus, suspended MoS2 becomes less n-type as it is irradiated. Supported MoS2, however, becomes more n-type as it is irradiated. These results could inform the development of radiation tolerance standards for MoS2, and thus, radiation-tolerant MoS2-based electronics.

More Details

Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties

Computers and Geosciences

Kadeethum, T.; Malley, Youngsoo'; Choi, Youngsoo; Viswanathan, Hari S.; Bouklas, Nikolaos; Yoon, Hongkyu Y.

Machine learning-based data-driven modeling can allow computationally efficient time-dependent solutions of PDEs, such as those that describe subsurface multiphysical problems. In this work, our previous approach (Kadeethum et al., 2021d) of conditional generative adversarial networks (cGAN) developed for the solution of steady-state problems involving highly heterogeneous material properties is extended to time-dependent problems by adopting the concept of continuous cGAN (CcGAN). The CcGAN that can condition continuous variables is developed to incorporate the time domain through either element-wise addition or conditional batch normalization. Moreover, this framework can handle training data that contain different timestamps and then predict timestamps that do not exist in the training data. As a numerical example, the transient response of the coupled poroelastic process is studied in two different permeability fields: Zinn & Harvey transformation and a bimodal transformation. The proposed CcGAN uses heterogeneous permeability fields as input parameters while pressure and displacement fields over time are model output. Our results show that the model provides sufficient accuracy with computational speed-up. This robust framework will enable us to perform real-time reservoir management and robust uncertainty quantification in poroelastic problems.

More Details

PyApprox: Enabling efficient model analysis

Jakeman, John D.

PyApprox is a Python-based one-stop-shop for probabilistic analysis of scientific numerical models. Easy to use and extendable tools are provided for constructing surrogates, sensitivity analysis, Bayesian inference, experimental design, and forward uncertainty quantification. The algorithms implemented represent the most popular methods for model analysis developed over the past two decades, including recent advances in multi-fidelity approaches that use multiple model discretizations and/or simplified physics to significantly reduce the computational cost of various types of analyses. Simple interfaces are provided for the most commonly-used algorithms to limit a user’s need to tune the various hyper-parameters of each algorithm. However, more advanced work flows that require customization of hyper-parameters is also supported. An extensive set of Benchmarks from the literature is also provided to facilitate the easy comparison of different algorithms for a wide range of model analyses. This paper introduces PyApprox and its various features, and presents results demonstrating the utility of PyApprox on a benchmark problem modeling the advection of a tracer in ground water.

More Details

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David B.

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

Using advanced data structures to enable responsive security monitoring

Cluster Computing

Kroeger, Thomas M.; Vorobyeva, Janet; Delayo, Daniel R.; Bender, Michael A.; Farach-Colton, Martin; Pandey, Prashant; Phillips, Cynthia A.; Singh, Shikha; Thomas, Eric D.

Write-optimized data structures (WODS), offer the potential to keep up with cyberstream event rates and give sub-second query response for key items like IP addresses. These data structures organize logs as the events are observed. To work in a real-world environment and not fill up the disk, WODS must efficiently expire older events. As the basis for our research into organizing security monitoring data, we implemented a tool, called Diventi, to index IP addresses in connection logs using RocksDB (a write-optimized LSM tree). We extended Diventi to automatically expire data as part of the data structures’ normal operations. We guarantee that Diventi always tracks the N most recent events and tracks no more than N+ k events for a parameter k< N, while ensuring the index is opportunistically pruned. To test Diventi at scale in a controlled environment, we used anonymized traces of IP communications collected at SuperComputing 2019. We synthetically extended the 2.4 billion connection events to 100 billion events. We tested Diventi vs. Elasticsearch, a common log indexing tool. In our test environment, Elasticsearch saw an ingestion rate of at best 37,000 events/s while Diventi sustained ingestion rates greater than 171,000 events/s. Our query response times were as much as 100 times faster, typically answering queries in under 80 ms. Furthermore, we saw no noticeable degradation in Diventi from expiration. We have deployed Diventi for many months where it has performed well and supported new security analysis capabilities.

More Details

Intrinsic ferroelectricity in Y-doped HfO2 thin films

Nature Materials

Lu, Ping L.

Ferroelectric HfO2-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO2-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm–2 has been observed at room temperature in Y-doped HfO2(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm–2, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca21 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO2-based materials, optimizing their performance in device applications.

More Details

The Multi-scenario Extreme Weather Simulator: Energy Resilience for Mission Assurance

Villa, Daniel V.; Schostek, Tyler; Bianchi, Carlo; Macmillan, Madeline; Carvallo, Juan P.

The Multi-scenario extreme weather simulator (MEWS) is a stochastic weather generation tool. The MEWS algorithm uses 50 or more years of National Oceanic and Atmospheric Association (NOAA) daily summaries [1] for maximum and minimum temperature and NOAA climate norms [2] to calculate historical heat wave and cold snap statistics. The algorithm takes these statistics and shifts them according to multiplication factors provided in the Intergovernmental Panel on Climate Change (IPCC) physical basis technical summary [3] for heat waves.

More Details

Nuclear Power Plant Physical Protection Recommendation Document

Evans, Alan S.

This document is aimed at providing guidance to the National Nuclear Security Administration’s (NNSA) Office of International Nuclear Security’s (INS) country and regional teams for implementing effective physical protection systems (PPSs) for nuclear power plants (NPPs) to prevent the radiological consequences of sabotage. This recommendation document includes input from the Physical Protection Functional Team (PPFT), the Response Functional Team (RFT), and the Sabotage Functional Team (SFT) under INS. Specifically, this document provides insights into increasing and sustaining physical protection capabilities at INS partner countries’ NPP sites. Nuclear power plants should consider that the intent of this document is to provide a historical context as well as technologies and methodologies that may be applied to improve physical protection capabilities. It also refers to relevant guidance from the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC).

More Details

2021-2022 Remote Work Study Final Results

Hammer, Ann H.; Abel, Kelsey C.; Joiner, Alexis T.

The COVID-19 pandemic has forced many organizations—from national laboratories to private companies—to change their workforce model to incorporate remote work. This study and the summarized results sought to understand the experiences of remote workers and the ways that remote work can impact recruitment and retention, employee engagement, and career development. Sandia, like many companies, has committed to establishing a hybrid work model that will persist postpandemic, and more Sandia employees than ever before have initiated remote work agreements. This parallels the nationwide increase in remote employment and motivates this study on remote work as an enduring part of workforce models.

More Details

Calculation of Dangerous Values for Radionuclides Considered by the IAEA Code of Conduct

Padilla, Isaiah C.; Olivas, Micaela O.; Rane, Shraddha V.; Potter, Charles A.

The D-value or dangerous quantity system was designed by the International Commission for Radiological Protection for the determination of source protection categories that can be used to reduce the likelihood of accidents, the consequences of which could result in harm to individuals or costly or expensive cleanup. The process includes multiple scenarios for exposure and two different approaches to the evaluation of detriment. This document provides an example calculation using 137Cs to walk through the complex process of determining its D-value in the hopes of making the process easily understandable.

More Details

Recycling of Lead Pastes from Spent Lead–Acid Batteries: Thermodynamic Constraints for Desulphurization

Recycling

Xiong, Yongliang X.

Lead–acid batteries are important to modern society because of their wide usage and low cost. The primary source for production of new lead–acid batteries is from recycling spent lead–acid batteries. In spent lead–acid batteries, lead is primarily present as lead pastes. In lead pastes, the dominant component is lead sulfate (PbSO4, mineral name anglesite) and lead oxide sulfate (PbO•PbSO4, mineral name lanarkite), which accounts for more than 60% of lead pastes. In the recycling process for lead–acid batteries, the desulphurization of lead sulfate is the key part to the overall process. In this work, the thermodynamic constraints for desulphurization via the hydrometallurgical route for recycling lead pastes are presented. The thermodynamic constraints are established according to the thermodynamic model that is applicable and important to recycling of lead pastes via hydrometallurgical routes in high ionic strength solutions that are expected to be in industrial processes. The thermodynamic database is based on the Pitzer equations for calculations of activity coefficients of aqueous species. The desulphurization of lead sulfates represented by PbSO4 can be achieved through the following routes. (1) conversion to lead oxalate in oxalate-bearing solutions; (2) conversion to lead monoxide in alkaline solutions; and (3) conversion to lead carbonate in carbonate solutions. Among the above three routes, the conversion to lead oxalate is environmentally friendly and has a strong thermodynamic driving force. Oxalate-bearing solutions such as oxalic acid and potassium oxalate solutions will provide high activities of oxalate that are many orders of magnitude higher than those required for conversion of anglesite or lanarkite to lead oxalate, in accordance with the thermodynamic model established for the oxalate system. An additional advantage of the oxalate conversion route is that no additional reductant is needed to reduce lead dioxide to lead oxide or lead sulfate, as there is a strong thermodynamic force to convert lead dioxide directly to lead oxalate. As lanarkite is an important sulfate-bearing phase in lead pastes, this study evaluates the solubility constant for lanarkite regarding the following reaction, based on the solubility data, PbO•PbSO4 + 2H+ ⇌ 2Pb2+ + SO42− + H2O(l).

More Details
Results 4001–4200 of 96,771
Results 4001–4200 of 96,771