Publications

16 Results

Search results

Jump to search filters

Resolving the Martensitic Transformation in Q&P Steels In-Situ at Dynamic Strain Rates Using Synchrotron X-ray Diffraction

Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science

Finfrock, Christopher B.; Ellyson, Benjamin; Becker, C.G.; Copley, John; Fezzaa, Kamel; Parab, Niranjan; Sun, Tao; Kirk, Cody; Chen, Weinong; Clarke, Amy; Clarke, Kester

Herein the dynamic deformation response of two quenching and partitioning (Q&P) steels was investigated using a high strain rate tension pressure bar and in-situ synchrotron radiography and diffraction. This allowed for concurrent measurements of the martensitic transformation, the elastic strains/stresses on the martensite and ferrite, and the bulk mechanical behavior. The steel with the greater fraction of ferrite exhibited greater ductility and lower strength, suggesting that dislocation slip in ferrite enhanced the deformability. Meanwhile, the kinetics of the martensitic transformation appeared similar for both steels, although the steel with a greater ferrite fraction retained more austenite in the neck after fracture.

More Details

Elucidating the temperature dependence of TRIP in Q&P steels using synchrotron X-Ray diffraction, constituent phase properties, and strain-based kinetics models

Acta Materialia

Finfrock, Christopher B.; Ellyson, Benjamin; Likith, Sri R.J.; Smith, Douglas R.; Rietema, Connor; Saville, Alec I.; Thrun, Melissa M.; Becker, C.G.; Araujo, Ana L.; Pavlina, Erik J.; Hu, Jun; Park, Jun-Sang; Clarke, Amy J.; Clarke, Kester D.

Understanding the deformation-induced martensitic transformation (DIMT) is critical for interpreting the structure-property relationships that govern the performance of transformation-induced plasticity (TRIP) assisted steels. However, modern TRIP-assisted steels often exhibit DIMT kinetics that are not easily captured by existing empirical models based on bulk tensile strain. We address this challenge by combined bulk uniaxial tensile tests and in-situ high energy synchrotron X-ray diffraction, which resolved the phase volume fractions, stress-strain response, and microstructure evolution of each constituent phase. A modification of the Olson-Cohen model is implemented, which describes the martensitic transformation kinetics as a function of the estimated partitioned strain in austenite, rather than the bulk tensile strain. This DIMT kinetic model is used as a framework to clarify the root cause of an insufficiently understood toughness trough reported for TRIP-assisted steels during deformation at elevated temperatures. Here, the importance of the temperature-dependent toughness is discussed, based on the opportunity to modify deformation processes to tailor the DIMT kinetics and mechanical properties during forming and in service.

More Details

Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg

Metallography, Microstructure, and Analysis

Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; Deibler, Lisa A.

AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electron microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. However, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.

More Details
16 Results
16 Results