The heat generated by high-level radioactive waste can pose numerical and physical challenges to subsurface flow and transport simulators if the liquid water content in a region near the waste package approaches residual saturation due to evaporation. Here, residual saturation is the fraction of the pore space occupied by liquid water when the hydraulic connectivity through a porous medium is lost, preventing the flow of liquid water. While conventional capillary pressure models represent residual saturation using asymptotically large values of capillary pressure, here, residual saturation is effectively modeled as a tortuosity effect alone. Treating the residual fluid as primarily dead-end pores and adsorbed films, relative permeability is independent of capillary pressure below residual saturation. To test this approach, PFLOTRAN is then used to simulate thermal-hydrological conditions resulting from direct disposal of a dual-purpose canister in unsaturated alluvium using both conventional asymptotic and revised, smooth models. Importantly, while the two models have comparable results over 100 000 years, the number of flow steps required is reduced by approximately 94%.
Tracer gases, whether they are chemical or isotopic in nature, are useful tools in examining the flow and transport of gaseous or volatile species in the underground. One application is using detection of short-lived argon and xenon radionuclides to monitor for underground nuclear explosions. However, even chemically inert species, such as the noble gases, have bene observed to exhibit non-conservative behavior when flowing through porous media containing certain materials, such as zeolites, due to gas adsorption processes. This report details the model developed, implemented, and tested in the open source and massively parallel subsurface flow and transport simulator PFLOTRAN for future use in modeling the transport of adsorbing tracer gases.
Researchers have recently estimated that Arctic submarine permafrost currently traps 60 billion tons of methane and contains 560 billion tons of organic carbon in seafloor sediments and soil, a giant pool of carbon with potentially large feedbacks on the climate system. Unlike terrestrial permafrost, the submarine permafrost system has remained a “known unknown” because of the difficulty in acquiring samples and measurements. Consequently, this potentially large carbon stock never yet considered in global climate models or policy discussions, represents a real wildcard in our understanding of Earth’s climate. This report summarizes our group’s effort at developing a numerical modeling framework designed to produce a first-of-its-kind estimate of Arctic methane gas releases from the marine sediments to the water column, and potentially to the atmosphere, where positive climate feedback may occur. Newly developed modeling capability supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories now gives us the ability to probabilistically map gas distribution and quantity in the seabed by using a hybrid approach of geospatial machine learning, and predictive numerical thermodynamic ensemble modeling. The novelty in this approach is its ability to produce maps of useful data in regions that are only sparsely sampled, a common challenge in the Arctic, and a major obstacle to progress in the past. By applying this model to the circum-Arctic continental shelves and integrating the flux of free gas from in situ methanogenesis and dissociating gas hydrates from the sediment column under climate forcing, we can provide the most reliable estimate of a spatially and temporally varying source term for greenhouse gas flux that can be used by global oceanographic circulation and Earth system models (such as DOE’s E3SM). The result will allow us to finally tackle the wildcard of the submarine permafrost carbon system, and better inform us about the severity of future national security threats that sustained climate change poses.
The Spent Fuel & Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 accomplishments by the PFLOTRAN Development group of the SFWST Campaign. The mission of this group is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of generic disposal concepts. In FY 2022, the PFLOTRAN development team made several advancements to our software infrastructure, code performance, and process modeling capabilities.
Thermal and hydrological behaviors of multiphase pore fluids in the presence of heat cause the near-field thermo-hydro-mechanicalchemical (THMC) coupled processes that can influence performance of geologic radioactive waste repositories. This hydro-thermal impacts may perturb the geomechanical stability of the disturbed rock zone (DRZ) surrounding the drifts in a shale-hosted deep geologic repository, which links heat/fluid flow and chemical/reactive transport between the engineered barrier system (EBS) and the host rock. This work focuses on integrating the effects of a near-field geomechanical process driven by buffer swelling into TH simulations to reduce dimensionality and improve computational efficiency. This geomechanical process can reduce the DRZ permeability, potentially influencing the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. The sensitivity test with variation in host rock permeability indicates that less permeable shale retards re-saturation of the buffer, such that slower increase of swelling pressure delays reduction of DRZ permeability.