Understanding temperature-dependent material decomposition and structural deformation induced by combined thermal-mechanical environments is critical for safety qualification of hardware under accident scenarios. Seeing in with X-rays elucidated the physics necessary to develop X-ray strain and thermometry diagnostics for use in optically opaque environments. Two parallel thermometry schemes were explored: X-ray fluorescence and X-ray diffraction of inorganic doped ceramics– colloquially known as thermographic phosphors. Two parallel surface strain techniques–Path-Integrated Digital Image Correlation and Frequency Multiplexed Digital Image Correlation–were demonstrated. Finally, preliminary demonstration of time-resolved digital volume correlation was performed by taking advantage of limited view reconstruction techniques. Additionally, research into blended ceramic-metal coatings was critical to generating intrinsic thermographic patterns for the future combination of X-ray strain and thermometry measurements.
Recent work on the development of integrated thermographic phosphors and digital image correlation (TP+DIC) for combined thermal–mechanical measurements has revealed the need for a flexible, stretchable phosphor coating for metal surfaces. Herein, we coat stainless steel substrates with a polymer-based phosphor ink in a DIC speckle pattern and demonstrate that the ink remains well bonded under substrate deformation. In contrast, a binderless phosphor DIC coating produced via aerosol deposition (AD) partially debonded from the substrate. DIC calculations reveal that the strain on the ink coating matches the strain on the substrate within 4% error at the highest substrate loads (0.05 mm/mm applied substrate strain), while the strain on the AD coating remains near 0 mm/mm as the substrate deforms. Spectrally resolved emission from the phosphor is measured through the transparent binder throughout testing, and the ratio method is used to infer temperature with an uncertainty of 1.7 °C. This phosphor ink coating will allow for accurate, non-contact strain and temperature measurements of a deforming surface.
Phosphor thermometry has become an established remote sensing technique for acquiring the temperature of surfaces and gas-phase flows. Often, phosphors are excited by a light source (typically emitting in the UV region), and their temperature-sensitive emission is captured. Temperature can be inferred from shifts in the emission spectra or the radiative decay lifetime during relaxation. While recent work has shown that the emission of several phosphors remains thermographic during x-ray excitation, the radiative decay lifetime was not investigated. The focus of the present study is to characterize the lifetime decay of the phosphor Gd2O2S:Tb for temperature sensitivity after excitation from a pulsed x-ray source. These results are compared to the lifetime decays found for this phosphor when excited using a pulsed UV laser. Results show that the lifetime of this phosphor exhibits comparable sensitivity to temperature between both excitation sources for a temperature range between 21 °C to 140 °C in increments of 20 °C. This work introduces a novel method of thermometry for researchers to implement when employing x-rays for diagnostics.
Energy-dispersive x-ray diffraction of thermographic phosphors has been explored as a complementary temperature diagnostic to visible phosphor thermometry in environments where the temperature-dependent optical luminescence of the phosphors is occluded. Powder phosphor samples were heated from ambient to 300 °C in incremental steps and probed with polychromatic synchrotron x rays; scattered photons were collected at a fixed diffraction angle of 3.9 °. Crystal structure, lattice parameters, and coefficients of thermal expansion were calculated from the diffraction data. Of the several phosphors surveyed, YAG:Dy, ZnO:Ga, and GOS:Tb were found to be excellent candidates for diffraction thermometry due to their strong, distinct diffraction peaks that shift in a repeatable and linear manner with temperature.