Publications

Results 3801–4000 of 96,771

Search results

Jump to search filters

Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties

Hansen, Stephanie B.; Baczewski, Andrew D.; Gomez, T.A.; Hentschel, T.W.; Jennings, Christopher A.; Kononov, Alina K.; Nagayama, Taisuke N.; Adler, Kelsey A.; Cangi, A.; Cochrane, Kyle C.; Laros, James H.; Schleife, A.

Predictive design of REHEDS experiments with radiation-hydrodynamic simulations requires knowledge of material properties (e.g. equations of state (EOS), transport coefficients, and radiation physics). Interpreting experimental results requires accurate models of diagnostic observables (e.g. detailed emission, absorption, and scattering spectra). In conditions of Local Thermodynamic Equilibrium (LTE), these material properties and observables can be pre-computed with relatively high accuracy and subsequently tabulated on simple temperature-density grids for fast look-up by simulations. When radiation and electron temperatures fall out of equilibrium, however, non-LTE effects can profoundly change material properties and diagnostic signatures. Accurately and efficiently incorporating these non-LTE effects has been a longstanding challenge for simulations. At present, most simulations include non-LTE effects by invoking highly simplified inline models. These inline non-LTE models are both much slower than table look-up and significantly less accurate than the detailed models used to populate LTE tables and diagnose experimental data through post-processing or inversion. Because inline non-LTE models are slow, designers avoid them whenever possible, which leads to known inaccuracies from using tabular LTE. Because inline models are simple, they are inconsistent with tabular data from detailed models, leading to ill-known inaccuracies, and they cannot generate detailed synthetic diagnostics suitable for direct comparisons with experimental data. This project addresses the challenge of generating and utilizing efficient, accurate, and consistent non-equilibrium material data along three complementary but relatively independent research lines. First, we have developed a relatively fast and accurate non-LTE average-atom model based on density functional theory (DFT) that provides a complete set of EOS, transport, and radiative data, and have rigorously tested it against more sophisticated first-principles multi-atom DFT models, including time-dependent DFT. Next, we have developed a tabular scheme and interpolation methods that compactly capture non-LTE effects for use in simulations and have implemented these tables in the GORGON magneto-hydrodynamic (MHD) code. Finally, we have developed post-processing tools that use detailed tabulated non-LTE data to directly predict experimental observables from simulation output.

More Details

Finite Element Simulation of the Acoustic Pressure Inside a Beverage Container for Non-Thermal, Ultrasound-based Pasteurization

Branch, Darren W.

The purpose of this effort is to investigate whether large acoustic pressure waves can be transmitted inside beverage containers to enable pasteurization. Acoustic waves are known to induce large nonlinear compressive forces and shock waves in fluids, suggesting that compression waves may be capable of damaging bacteria inside beverage containers without appreciably increasingly the temperature or altering the freshness and flavor of the beverage contents. Although a combined process such as thermosonication (e.g., sonication with heating) is likely more efficient, it is instructive to compute the acoustic pressure field distribution inside the beverage container. The COMSOL simulations used two and three-dimensional models of beverage containers placed in a water bath to compute the acoustic pressure field. A limitation of these COMSOL models is that they cannot determine the bacterial lysis efficiency, rather the models provide an indirect metric of bacterial lysis based on the magnitude of the pressure field and its distribution.

More Details

Neuromorphic Information Processing by Optical Media

Leonard, Francois L.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field int the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ x 100λ with aperture density λ-2 achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Improving and testing machine learning methods for benchmarking soil carbon dynamics representation of land surface models

Mishra, Umakant; Gautam, Sagar

Representation of soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon climate feedbacks. The magnitude of this uncertainty can be reduced by accurate representation of environmental controllers of SOC stocks in ESMs. In this study, we used data of environmental factors, field SOC observations, ESM projections and machine learning approaches to identify dominant environmental controllers of SOC stocks and derive functional relationships between environmental factors and SOC stocks. Our derived functional relationships predicted SOC stocks with similar accuracy as the machine learning approach. We used the derived relationships to benchmark the coupled model intercomparison project phase six ESM representation of SOC stocks. We found divergent environmental control representation in ESMs in comparison to field observations. Representation of SOC in ESMs can be improved by including additional environmental factors and representing their functional relationships with SOC consistent with observations.

More Details

Towards Z-Next: The Integration of Theory, Experiments, and Computational Simulation in a Bayesian Data Assimilation Framework

Maupin, Kathryn A.; Laros, James H.; Laros, James H.; Knapp, Patrick K.; Joseph, V.R.; Wu, C.F.J.; Glinsky, Michael E.; Valaitis, Sonata M.

Making reliable predictions in the presence of uncertainty is critical to high-consequence modeling and simulation activities, such as those encountered at Sandia National Laboratories. Surrogate or reduced-order models are often used to mitigate the expense of performing quality uncertainty analyses with high-fidelity, physics-based codes. However, phenomenological surrogate models do not always adhere to important physics and system properties. This project develops surrogate models that integrate physical theory with experimental data through a maximally-informative framework that accounts for the many uncertainties present in computational modeling problems. Correlations between relevant outputs are preserved through the use of multi-output or co-predictive surrogate models; known physical properties (specifically monotoncity) are also preserved; and unknown physics and phenomena are detected using a causal analysis. By endowing surrogate models with key properties of the physical system being studied, their predictive power is arguably enhanced, allowing for reliable simulations and analyses at a reduced computational cost.

More Details

AC compensation of 3D magnetic diagnostic signals in DIII-D and National Spherical Torus Experiment-Upgrade (NSTX-U) for real-time application

Review of Scientific Instruments

Munaretto, S.; Myers, Clayton E.; Gerhardt, S.P.; Logan, N.C.; Menard, J.E.; Strait, E.J.

A time domain algorithm has been developed to remove the vacuum pickup generated by both coil current (DC) and induced vessel current (AC) in real time from three dimensional (3D) magnetic diagnostic signals in the National Spherical Torus Experiment-Upgrade (NSTX-U) and DIII-D tokamaks. The possibility of detecting 3D plasma perturbations in real time is essential in modern and future tokamaks to avoid and control MHD instabilities. The presence of vacuum field pickup, due to toroidally asymmetric (3D) coils or to misalignment between sensors and axisymmetric (2D) coils, pollutes the measured plasma 3D field, making the detection of the magnetic field produced by the plasma challenging. Although the DC coupling between coils and sensors can be easily calculated and removed, the AC part is more difficult. An algorithm based on a layered low-pass filter approach for the AC compensation and its application for DIII-D and NSTX-U data is presented, showing that this method reduces the vacuum pickup to the noise level. Comparison of plasma response measurements with and without vacuum compensation shows that accurate mode locking detection and plasma response identification require precise AC and DC compensations.

More Details

Internship Experience

Redhouse, Theala L.

I started my internship in January 2022 but the research on measuring dispersion and loss of 355nm light from a silicon oxide waveguide began in August 2022 which will be the focus of this paper. The motivation of this project is to determine whether it is possible to use pulsed 355nm light in an integrated waveguide within an ion trap chip. To begin this project, light from the 355nm Coherent Paladin laser was coupled into a fiber which will be referred to as the “source fiber.” After coupling into a fiber, loss and dispersion measurements could be performed as this fiber was used to deliver light to each of the experiments which will be covered in detail in the following paragraphs.

More Details

Numerical and Experimental Investigations on the Ignition Behavior of OME

Energies

Wiesmann, Frederik; Strauss, Lukas; Riess, Sebastian; Manin, Julien L.; Wan, Kevin W.; Lauer, Thomas

On the path towards climate-neutral future mobility, the usage of synthetic fuels derived from renewable power sources, so-called e-fuels, will be necessary. Oxygenated e-fuels, which contain oxygen in their chemical structure, not only have the potential to realize a climate-neutral powertrain, but also to burn more cleanly in terms of soot formation. Polyoxymethylene dimethyl ethers (PODE or OMEs) are a frequently discussed representative of such combustibles. However, to operate compression ignition engines with these fuels achieving maximum efficiency and minimum emissions, the physical-chemical behavior of OMEs needs to be understood and quantified. Especially the detailed characterization of physical and chemical properties of the spray is of utmost importance for the optimization of the injection and the mixture formation process. The presented work aimed to develop a comprehensive CFD model to specify the differences between OMEs and dodecane, which served as a reference diesel-like fuel, with regards to spray atomization, mixing and auto-ignition for single- and multi-injection patterns. The simulation results were validated against experimental data from a high-temperature and high-pressure combustion vessel. The sprays’ liquid and vapor phase penetration were measured with Mie-scattering and schlieren-imaging as well as diffuse back illumination and Rayleigh-scattering for both fuels. To characterize the ignition process and the flame propagation, measurements of the OH* chemiluminescence of the flame were carried out. Significant differences in the ignition behavior between OMEs and dodecane could be identified in both experiments and CFD simulations. Liquid penetration as well as flame lift-off length are shown to be consistently longer for OMEs. Zones of high reaction activity differ substantially for the two fuels: Along the spray center axis for OMEs and at the shear boundary layers of fuel and ambient air for dodecane. Additionally, the transient behavior of high temperature reactions for OME is predicted to be much faster.

More Details

The Power of Priors: Improved Enrichment Safeguards

Shoman, Nathan; Honnold, Philip H.

International safeguards currently rely on material accountancy to verify that declared nuclear material is present and unmodified. Although effective, material accountancy for large bulk facilities can be expensive to implement due to the high precision instrumentation required to meet regulatory targets. Process monitoring has long been considered to improve material accountancy. However, effective integration of process monitoring has been met with mixed results. Given the large successes in other domains, machine learning may present a solution for process monitoring integration. Past work has shown that unsupervised approaches struggle due to measurement error. Although not studied in depth for a safeguards context, supervised approaches often have poor generalization for unseen classes of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for training, can improve the generalization of supervised approaches. Further, the underlying models needed to generate these datasets need only accurately model certain high importance features.

More Details

Accelerating Multiscale Materials Modeling with Machine Learning

Modine, N.A.; Stephens, John A.; Swiler, Laura P.; Thompson, Aidan P.; Vogel, Dayton J.; Cangi, Attila; Feilder, Lenz; Rajamanickam, Sivasankaran R.

The focus of this project is to accelerate and transform the workflow of multiscale materials modeling by developing an integrated toolchain seamlessly combining DFT, SNAP, LAMMPS, (shown in Figure 1-1) and a machine-learning (ML) model that will more efficiently extract information from a smaller set of first-principles calculations. Our ML model enables us to accelerate first-principles data generation by interpolating existing high fidelity data, and extend the simulation scale by extrapolating high fidelity data (102 atoms) to the mesoscale (104 atoms). It encodes the underlying physics of atomic interactions on the microscopic scale by adapting a variety of ML techniques such as deep neural networks (DNNs), and graph neural networks (GNNs). We developed a new surrogate model for density functional theory using deep neural networks. The developed ML surrogate is demonstrated in a workflow to generate accurate band energies, total energies, and density of the 298K and 933K Aluminum systems. Furthermore, the models can be used to predict the quantities of interest for systems with more number of atoms than the training data set. We have demonstrated that the ML model can be used to compute the quantities of interest for systems with 100,000 Al atoms. When compared with 2000 Al system the new surrogate model is as accurate as DFT, but three orders of magnitude faster. We also explored optimal experimental design techniques to choose the training data and novel Graph Neural Networks to train on smaller data sets. These are promising methods that need to be explored in the future.

More Details

IMoFi (Intelligent Model Fidelity): Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Updated Accomplishments

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim; Holman, Derek; Mannon, Tim; Pinney, David

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO), including some updates from the previous report SAND2022-0215, to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

Decision Science for Machine Learning (DeSciML)

Darling, Michael C.; Field, Richard V.; Smith, Mark A.; Doak, Justin E.; Headen, James M.; Stracuzzi, David J.

The increasing use of machine learning (ML) models to support high-consequence decision making drives a need to increase the rigor of ML-based decision making. Critical problems ranging from climate change to nonproliferation monitoring rely on machine learning for aspects of their analyses. Likewise, future technologies, such as incorporation of data-driven methods into the stockpile surveillance and predictive failure analysis for weapons components, will all rely on decision-making that incorporates the output of machine learning models. In this project, our main focus was the development of decision scientific methods that combine uncertainty estimates for machine learning predictions, with a domain-specific model of error costs. Other focus areas include uncertainty measurement in ML predictions, designing decision rules using multiobjecive optimization, the value of uncertainty reduction, and decision-tailored uncertainty quantification for probability estimates. By laying foundations for rigorous decision making based on the predictions of machine learning models, these approaches are directly relevant to every national security mission that applies, or will apply, machine learning to data, most of which entail some decision context.

More Details

Modification of a Silicon Photomultiplier for Reduced High Temperature Dark Count Rate

Balajthy, Jon A.; Burkart, James K.; Christiansen, Joel T.; Sweany, Melinda; Udoni, Darlene M.; Weber, Thomas M.

In this work we present a novel method for improving the high-temperature performance of silicon photomultipliers (SiPMs) via focused ion beam (FIB) modification of individual microcells. The literature suggests that most of the dark count rate (DCR) in a SiPM is contributed by a small percentage (<5%) of microcells. By using a FIB to electrically deactivate this relatively small number of microcells, we believe we can greatly reduce the overall DCR of the SiPM at the expense of a small reduction in overall photodetection efficiency, thereby improving its high temperature performance. In this report we describe our methods for characterizing the SiPM to determine which individual microcells contribute the most to the DCR, preparing the SiPM for FIB, and modifying the SiPM using the FIB to deactivate the identified microcells.

More Details

Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results

Eldred, Michael S.; Adams, Brian M.; Geraci, Gianluca G.; Portone, Teresa P.; Ridgway, Elliott M.; Stephens, John A.; Wildey, Timothy M.

This report documents the results of an FY22 ASC V&V level 2 milestone demonstrating new algorithms for multifidelity uncertainty quantification. Part I of the report describes the algorithms, studies their performance on a simple model problem, and then deploys the methods to a thermal battery example from the open literature. Part II (restricted distribution) applies the multifidelity UQ methods to specific thermal batteries of interest to the NNSA/ASC program.

More Details

Sensitivity Analyses for Monte Carlo Sampling-Based Particle Simulations

Bond, Stephen D.; Franke, Brian C.; Lehoucq, Richard B.; Mckinley, Scott A.

Computational design-based optimization is a well-used tool in science and engineering. Our report documents the successful use of a particle sensitivity analysis for design-based optimization within Monte Carlo sampling-based particle simulation—a currently unavailable capability. Such a capability enables the particle simulation communities to go beyond forward simulation and promises to reduce the burden on overworked analysts by getting more done with less computation.

More Details

Fragmentation analysis of a bar with the Lip-field approach

Mechanics of Materials

Stershic, Andrew J.; Moes, Nicolas; Le, Benoit

The Lip-field approach was introduced in Moës and Chevaugeon (2021) as a new way to regularize softening material models. It was tested in 1D quasistatic in Moës and Chevaugeon (2021) and 2D quasistatic in Chevaugeon and Moës (2021): this paper extends it to 1D dynamics, on the challenging problem of dynamic fragmentation. The Lip-field approach formulates the mechanical problem to be solved as an optimization problem, where the incremental potential to be minimized is the non-regularized one. Spurious localization is prevented by imposing a Lipschitz constraint on the damage field. The displacement and damage field at each time step are obtained by a staggered algorithm, that is the displacement field is computed for a fixed damage field, then the damage field is computed for a fixed displacement field. Indeed, these two problems are convex, which is not the case of the global problem where the displacement and damage fields are sought at the same time. The incremental potential is obtained by equivalence with a cohesive zone model, which makes material parameters calibration simple. A non-regularized local damage equivalent to a cohesive zone model is also proposed. It is used as a reference for the Lip-field approach, without the need to implement displacement jumps. These approaches are applied to the brittle fragmentation of a 1D bar with randomly perturbed material properties to accelerate spatial convergence. Both explicit and implicit dynamic implementations are compared. Favorable comparison to several analytical, numerical and experimental references serves to validate the modeling approach.

More Details

Developing a high-speed terahertz imaging system based on parametric upconversion imaging for penetrative sensing

White, Logan W.; Pickett, Lyle M.; Manin, Julien L.

Imaging using THz waves has been a promising option for penetrative measurements in environments that are opaque to visible wavelengths. However, available THz imaging systems have been limited to relatively low frame rates and cannot be applied to study fast dynamics. This work explores the use of upconversion imaging techniques based on nonlinear optics to enable wavelength-flexible high frame rate THz imaging. UpConversion Imaging (UCI) uses nonlinear conversion techniques to shift the THz wavelengths carrying a target image to shorter visible or near-IR wavelengths that can be detected by available high-speed cameras. This report describes the analysis methodology used to design a prototype high-rate THz UCI system and gives a detailed explanations of the design choices that were made. The design uses a high-rate pulse-burst laser system to pump both THz generation and THz upconversion detection, allowing for scaling to acquisition rates in excess of 10 kHz. The design of the prototype system described in this report has been completed and all necessary materials have been procured. Assembly and characterization testing is on-going at the submission of this report. This report proposes future directions for work on high-rate THz UCI and potential applications of future systems.

More Details

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica R.; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah M.; Brow, Richard; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, Scott J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details

Extension of Interferometric Synthetic Aperture Radar to Multiple Phase-Centers (Midyear LDRD Final Report – second edition)

Bickel, Douglas L.; Delaurentis, John M.

This document contains the final report for the midyear LDRD titled "Extension of Interferometric Synthetic Aperture Radar to Multiple Phase-Centers." This report presents an overview of several methods for approaching the two-target in layover problem that exists in interferometric synthetic aperture radar systems. Simulation results for one of the methods are presented. In addition, a new direct approach is introduced.

More Details

Multi-fidelity information fusion and resource allocation

Jakeman, John D.; Eldred, Michael S.; Geraci, Gianluca G.; Seidl, Daniel T.; Smith, Thomas M.; Gorodetsky, Alex A.; Pham, Trung; Narayan, Akil; Zeng, Xiaoshu; Ghanem, Roger

This project created and demonstrated a framework for the efficient and accurate prediction of complex systems with only a limited amount of highly trusted data. These next generation computational multi-fidelity tools fuse multiple information sources of varying cost and accuracy to reduce the computational and experimental resources needed for designing and assessing complex multi-physics/scale/component systems. These tools have already been used to substantially improve the computational efficiency of simulation aided modeling activities from assessing thermal battery performance to predicting material deformation. This report summarizes the work carried out during a two year LDRD project. Specifically we present our technical accomplishments; project outputs such as publications, presentations and professional leadership activities; and the project’s legacy.

More Details

Entropy and its Relationship with Statistics

Lehoucq, Richard B.; Mayer, Carolyn D.; Tucker, James D.

The purpose of our report is to discuss the notion of entropy and its relationship with statistics. Our goal is to provide a manner in which you can think about entropy, its central role within information theory and relationship with statistics. We review various relationships between information theory and statistics—nearly all are well-known but unfortunately are often not recognized. Entropy quantities the "average amount of surprise" in a random variable and lies at the heart of information theory, which studies the transmission, processing, extraction, and utilization of information. For us, data is information. What is the distinction between information theory and statistics? Information theorists work with probability distributions. Instead, statisticians work with samples. In so many words, information theory using samples is the practice of statistics.

More Details

Synthetic Microbial Consortium for Biological Breakdown and Conversion of Lignin

Sale, Kenneth L.; Rodriguez Ruiz, Jose A.; Light, Yooli K.; Tran-Gyamfi, Mary B.; Hirakawa, Matthew H.; George, Anthe G.; Geiselman, Gina M.; Martinez, Salvador M.

The plant polymer lignin is the most abundant renewable source of aromatics on the planet and conversion of it to valuable fuels and chemicals is critical to the economic viability of a lignocellulosic biofuels industry and to meeting the DOE’s 2022 goal of $\$2.50$/gallon mean biofuel selling price. Presently, there is no efficient way of converting lignin into valuable commodities. Current biological approaches require mixtures of expensive ligninolytic enzymes and engineered microbes. This project was aimed at circumventing these problems by discovering commensal relationships among fungi and bacteria involved in biological lignin utilization and using this knowledge to engineer microbial communities capable of converting lignin into renewable fuels and chemicals. Essentially, we aimed to learn from, mimic and improve on nature. We discovered fungi that synergistically work together to degrade lignin, engineered fungal systems to increase expression of the required enzymes and engineered organisms to produce products such as biodegradable plastics precursors.

More Details

Processing, structure, and thermal properties of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics

Bishop, Sean R.; Lowry, Daniel R.; Peretti, Amanda S.; Laros, James H.; Salinas, Perla A.; Coker, Eric N.; Arata, Edward R.; Rodriguez, Mark A.; Murray, Shannon E.; Mahaffey, Jacob T.; Biedermann, Laura B.

Negative and zero coefficient of thermal expansion (CTE) materials are of interest for developing polymer composites in electronic circuits that match the expansion of Si and in zero CTE supports for optical components, e.g., mirrors. In this work, the processing challenges and stability of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics are discussed. Al0.5Sc1.5W3O12 is demonstrated to be a relatively simple oxide to fabricate in large quantity and is shown to exhibit single phase up to 1300 °C in air and inert N2 environments. The negative and zero CTE behavior was confirmed with dilatometry. Thermal conductivity and heat capacity were reported for the first time for HfMgW3O12 and Al0.5Sc1.5W3O12 and thermal conductivity was found to be very low (~0.5 W/mK). Grüneisen parameter is also estimated. Methods for integration of Al0.5Sc1.5W3O12 with other materials was examined and embedding 50 vol% of the ceramic powder in flexible epoxy was demonstrated with a commercial vendor.

More Details

Optimization of flow in additively manufactured porous columns with graded permeability

AIChE Journal

Salloum, Maher S.; Robinson, David R.

Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.

More Details

Signal-Based Fast Tripping Protection Schemes for Electric Power Distribution System Resilience

Reno, Matthew J.; Jimenez Aparicio, Miguel J.; Wilches-Bernal, Felipe; Hernandez Alvidrez, Javier H.; Montoya, Armando Y.; Barba, Pedro; Flicker, Jack D.; Dow, Andrew R.; Bidram, Ali; Paruthiyil, Sajay K.; Montoya, Rudy A.; Poudel, Binod; Reimer, Benjamin; Lavrova, Olga; Biswal, Milan; Miyagishima, Frank; Carr, Christopher; Pati, Shubhasmita; Ranade, Satish J.; Grijalva, Santiago; Paul, Shuva

This report is a summary of a 3-year LDRD project that developed novel methods to detect faults in the electric power grid dramatically faster than today’s protection systems. Accurately detecting and quickly removing electrical faults is imperative for power system resilience and national security to minimize impacts to defense critical infrastructure. The new protection schemes will improve grid stability during disturbances and allow additional integration of renewable energy technologies with low inertia and low fault currents. Signal-based fast tripping schemes were developed that use the physics of the grid and do not rely on communication to reduce cyber risks for safely removing faults.

More Details

Physically rigorous reduced-order flow models of fractured subsurface environments without explosive computational cost

Beskardes, G.D.; Weiss, Chester J.; Darrh, Andrea N.; Kuhlman, Kristopher L.; Chang, Kyung W.

Fractured media models comprise discontinuities of multiple lengths (e.g. fracture lengths and apertures, wellbore area) that fall into the relatively insignificant length scales spanning millimeter-scale fractures to centimeter-scale wellbores in comparison to the extensions of the field of interest, and challenge the conventional discretization methods imposing highly-fine meshing and formidably large numerical cost. By utilizing the recent developments in the finite element analysis of electromagnetics that allow to represent material properties on a hierarchical geometry, this project develops computational capabilities to model fluid flow, heat conduction, transport and induced polarization in large-scale geologic environments that possess geometrically-complex fractures and man-made infrastructures without explosive computational cost. The computational efficiency and robustness of this multi-physics modeling tool are demonstrated by considering various highly-realistic complex geologic environments that are common in many energy and national security related engineering problems.

More Details

Resilience Enhancements through Deep Learning Yields

Eydenberg, Michael S.; Batsch-Smith, Lisa; Bice, Charles T.; Blakely, Logan; Bynum, Michael L.; Boukouvala, Fani; Castillo, Anya; Haddad, Joshua; Hart, William E.; Jalving, Jordan; Kilwein, Zachary A.; Laird, Carl; Skolfield, Joshua K.

This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.

More Details

Carboxylate binding prefers two cations to one

Physical Chemistry Chemical Physics

Stevens, Mark J.; Rempe, Susan R.

Almost all studies of specific ion binding by carboxylates (-COO−) have considered only a single cation, but clustering of ions and ligands is a common phenomenon. We apply density functional theory to investigate how variations in the number of acetate ligands in binding to two monovalent cations affects ion binding preferences. We study a series of monovalent (Li+, Na+, K+, Cs+) ions relevant to experimental work on many topics, including ion channels, battery storage, water purification and solar cells. We find that the preferred optimal structure has 3 acetates except for Cs+, which has 2 acetates. The optimal coordination of the cation by the carboxylate O atoms is 4 for both Na+ and K+, and 3 for Li+ and Cs+. There is a 4-fold coordination minimum just a few kcal mol−1 higher than the optimal 3-fold structure for Li+. For two cations, multiple minima occur in the vicinity of the lowest free energy state. We find that, for Li, Na and K, the preferred optimal structure with two cations is favored over a mixture of single cation complexes, providing a basis for understanding ionic cluster formation that is relevant for engineering proteins and other materials for rapid, selective ion transport.

More Details

Survey of the Worldwide Supply Chain of Commodities Needed for a Quantum Technology Program

Farley, David R.; Urayama, Junji U.

Quantum Information Science (QIS) is an emerging technology being pursued by fundamental science research groups worldwide, as well as commercial companies and government programs. There are a variety of QIS disciplines, including quantum computing, quantum sensing and quantum encryption. Some of the commodities needed for a robust quantum laboratory are particular to quantum phenomenon, but in general the equipment needed is similar to that needed for a typical high - technology lab (e.g. oscilloscopes, lasers, vacuum chambers, etc.). This study focuses on identifying commodities manufactured worldwide that would be needed for a robust quantum lab. The authors' own knowledge of needed equipment and primary vendors was used as a starting point, follow ed by extensive internet searching and utilization of buyer's guides to create a large spreadsheet of most of the components needed, the company offering the components, and country of manufacture. With this extensive spreadsheet, stakeholders can identify commodities that would be needed for a quantum lab oratory and potentially identify market choke points.

More Details

Tracer Gas Model Development and Verification in PFLOTRAN

Paul, Matthew J.; Fukuyama, David E.; Leone, Rosemary C.; Nole, Michael A.; Greathouse, Jeffery A.

Tracer gases, whether they are chemical or isotopic in nature, are useful tools in examining the flow and transport of gaseous or volatile species in the underground. One application is using detection of short-lived argon and xenon radionuclides to monitor for underground nuclear explosions. However, even chemically inert species, such as the noble gases, have bene observed to exhibit non-conservative behavior when flowing through porous media containing certain materials, such as zeolites, due to gas adsorption processes. This report details the model developed, implemented, and tested in the open source and massively parallel subsurface flow and transport simulator PFLOTRAN for future use in modeling the transport of adsorbing tracer gases.

More Details

94ND10 Intergranular Phase Analysis and Fabrication

Bishop, Sean R.; Boro, Joseph R.; Jauregui, Luis J.; Price, Patrick M.; Peretti, Amanda S.; Lowry, Daniel R.; Kammler, Daniel K.

The composition and phase fraction of the intergranular phase of 94ND10 ceramic is determined and fabricated ex situ. The fraction of each phase is 85.96 vol% Al2O3 bulk phase, 9.46 vol% Mg-rich intergranular phase, 4.36 vol% Ca/Si-rich intergranular phase, and 0.22 vol% voids. The Ca/Si-rich phase consists of 0.628 at% Mg, 12.59 at% Si, 10.24 at% Ca, 17.23 at% Al, and balance O. The Mgrich phase consists of 14.17 at% Mg, 0.066 at% Si, 0.047 at% Ca, 28.69 at% Al, and balance O. XRD of the ex situ intergranular material made by mixed oxides consisting of the above phase and element fractions yielded 92 vol% MgAl2O4 phase and 8 vol% CaAl2Si2O8 phase. The formation of MgAl2O4 phase is consistent with prior XRD of 94ND10, while the CaAl2Si2O8 phase may exist in 94ND10 but at a concentration not readily detected with XRD. The MgAl2O4 and CaAl2Si2O8 phases determined from XRD are expected to have the elemental compositions for the Mg-rich and Ca/Si-rich phases above by cation substitutions (e.g., some Mg substituted for by Ca in the Mg-rich phase) and impurity phases not detectable with XRD.

More Details

Acetate-based water-in-salt electrolytes (WiSE) for improved zinc battery cycling [Poster]

Dutta, Debayon; Turney, Damon; Lambert, Timothy N.; Messinger, Robert J.; Banerjee, Sanjoy

Grid scale batteries need to be inexpensive to manufacture, safe to operate, and non-toxic in composition. Zinc aqueous (alkaline) batteries hold much promise, but good cycle life and utilization of the zinc has proven difficult partly because zinc is susceptible to H2 gas evolution in KOH. Water-insalt electrolyte (WiSE) can address this shortcoming by lowering the activity of free water molecules in solution, thus reducing H2 gas evolution. In this work, we show the relevant fundamental physicochemical properties of an acetate-based WiSE to establish the practicality and performance of this class of WiSE for battery application. Research and understanding of acetate WiSE is in a nascent state, presently.

More Details

Technoeconomics of Particle-based CSP Featuring Falling Particle Receivers with and without Active Heliostat Control

Mills, Brantley M.; Lee, Samuel; Gonzalez-Portillo, Luis F.; Ho, Clifford K.; Albrecht, Kevin J.

This report documents the results and conclusions of a recent project to understand the technoeconomics of utility-scale, particle-based concentrating solar power (CSP) facilities leveraging unique operational strategies. This project included two primary objectives. The first project objective was to build confidence in the modeling approaches applied to falling particle receivers (FPRs) including the effect s of wind. The second project objective was to create the necessary modeling capability to adequately predict and maximize the annual performance of utility-scale, particle-based CSP plants under anticipated conditions with and without active heliostat control. Results of an extensive model validation study provided the strongest evidence to date for the modeling strategies typically applied to FPRs, albeit at smaller receiver scales. This modeling strategy was then applied in a parametric study of candidate utility-scale FPRs, including both free-falling and multistage FPR concepts, to develop reduced order models for predicting the receiver thermal efficiency under anticipated environmental and operating conditions. Multistage FPRs were found to significantly improve receiver performance at utility-scales. These reduced order models were then leveraged in a sophisticated technoeconomic analysis to optimize utility-scale , particle-based CSP plants considering the potential of active heliostat control. In summary, active heliostat control did not show significant performance benefits to future utility-scale CSP systems though some benefit may still be realized in FPR designs with wide acceptance angles and/or with lower concentration ratios. Using the latest FPR technologies available, the levelized-cost of electricity was quantified for particle-based CSP facilities with nominal powers ranging from 5 MWe up to 100 MWe with many viable designs having costs < 0.06 $/kWh and local minimums occurring between ~25–35 MWe.

More Details

304L Can Crush Validation Studies

Lao, Xai; Antoun, Bonnie R.; Jones, Amanda; Mac Donald, Kimberley A.; Stershic, Andrew J.; Talamini, Brandon

Accurate prediction of ductile behavior of structural alloys up to and including failure is essential in component or system failure assessment, which is necessary for nuclear weapons alteration and life extensions programs of Sandia National Laboratories. Modeling such behavior requires computational capabilities to robustly capture strong nonlinearities (geometric and material), rate- dependent and temperature-dependent properties, and ductile failure mechanisms. This study's objective is to validate numerical simulations of a high-deformation crush of a stainless steel can. The process consists of identifying a suitable can geometry and loading conditions, conducting the laboratory testing, developing a high-quality Sierra/SM simulation, and then drawing comparisons between model and measurement to assess the fitness of the simulation in regards to material model (plasticity), finite element model construction, and failure model. Following previous material model calibration, a J2 plasticity model with a microstructural BCJ failure model is employed to model the test specimen made of 304L stainless steel. Simulated results are verified and validated through mesh and mass-scaling convergence studies, parameter sensitivity studies, and a comparison to experimental data. The converged mesh and degree of mass-scaling are the mesh discretization with 140,372 elements, and a mass scaling with a target time increment of 1.0e-6 seconds and time step scale factor of 0.5, respectively. Results from the coupled thermal-mechanical explicit dynamic analysis are comparable to the experimental data. Simulated global force vs displacement (F/D) response predicts key points such as yield, ultimate, and kinks of the experimental F/D response. Furthermore, the final deformed shape of the can and field data predicted from the analysis are similar to that of the deformed can, as measured by 3D optical CMM scans and DIC data from the experiment.

More Details

Fractal-Fin, Dimpled Solar Heat Collector with Solar Glaze

Rodriguez, Salvador B.

Exterior solar glaze was added to a 3 foot x 3 foot x 3 foot aluminum solar collector that had six triangular dimpled fins for enhanced heat transfer. The interior vertical wall on the south side was also dimpled. The solar glaze was added to compare its solar collection performance with unglazed solar collector experiments conducted at Sandia in 2021. The east, west, front, and top sides of the solar collector were encased with solar glaze glass. Because the solar incident heat on the north and bottom sides was minimal, they were insulated to retain the heat that was collected by the other four sides. The advantages of the solar glaze include the entrapment of more solar heat, as well as insulation from the wind. The disadvantages are that it increases the cost of the solar collector and has fragile structural properties when compared to the aluminum walls. Nevertheless, prior to conducting experiments with the glazed solar collector, it was not clear if the benefits outweighed the disadvantages. These issues are addressed herein, with the conclusion that the additional amount of heat collected by the glaze justifies the additional cost. The solar collector glaze design, experimental data, and costs and benefits are documented in this report.

More Details

Combined Imaging and RNA-Seq on a Microfluidic Platform for Viral Infection Studies

Krishnakumar, Raga K.; Sjoberg, Kurt C.; Fisher, Andrew N.; Doudoukjian, Gloria E.; Webster, Elizabeth R.

The goal of this work was to pioneer a novel, low-overhead protocol for simultaneously assaying cell-surface markers and intracellular gene expression in a single mammalian cell. The purpose of developing such a method is to be able to understand the mechanisms by which pathogens engage with individual mammalian cells, depending on their cell surface proteins, and how both host and pathogen gene expression changes are reflective of these mechanisms. The knowledge gained from such analyses of single cells will ultimately lead to more robust pathogen detection and countermeasures. Our method was aimed at streamlining both the upstream cell sample preparation using microfluidic methods, as well as the actual library making protocol. Specifically, we wanted to implement a random hexamer-based reverse transcription of all RNA within a single cell (as opposed to oligo dT-based which would only capture polyadenylated transcripts), and then use a CRISPR-based method called scDash to deplete ribosomal DNAs (since ribosomal RNAs make up the majority of the RNA in a mammalian cell). After significant troubleshooting, we demonstrate that we are able to prepare cDNA from RNA using the random hexamer primer, and perform the rDNA depletion. We also show that we can visualize individually stained cells, setting up the pipeline for connecting surface markers to RNA-sequencing profiles. Finally, we test a number of devices for various parts of the pipeline, including bead generation, optical barcoding and cell dispensing, and demonstrate that while some of these have potential, more work is needed to optimize this part of the pipeline.

More Details

Unmanned Aerial Vehicle Synthetic Aperture RADAR for Surface Change Monitoring

Yocky, David A.; West, Roger D.

Space-based and airplane-based synthetic aperture RADAR (SAR) can monitor ground height using interferometric SAR (InSAR) collections. However, fielding the airplane-based SAR is expensive and coordinating the frequency and timing of ground experiments with space-based SAR is challenging. This research explored the possibility of using a small, mobile unmanned aerial vehicle- base (UAV) SAR to see if it could provide a quick and inexpensive InSAR option for the Source Physics Experiment (SPE) Phase III project. Firstly, a local feasibility collection using a UAV-based SAR showed that InSAR products and height measurements were possible, but that in-scene fiducials were needed to assist in digital elevation model (DEM) construction. Secondly, an InSAR collection was planned and executed over the SPE Phase III site using the same platform configuration. We found that the image formation by the SAR manufacturer creates discontinuities, and that noise impacted the generation and accuracy of height maps. These processing artifacts need to be overcome to generate an accurate height map.

More Details

Modeling Urban Acoustic Noise in the Las Vegas, NV Region

Wynn, Nora C.; Dannemann Dugick, Fransiska K.

Ambient infrasound noise in quiet, rural environments has been extensively studied and well-characterized through noise models for several decades. More recently, creating noise models for high-noise rural environments has also become an area of active research. However, far less work has been done to create generalized low-frequency noise models for urban areas. The high ambient noise levels expected in cities and other highly populated areas means that these environments are regarded as poor locations for acoustic sensors, and historically, sensor deployment in urban areas were avoided for this reason. However, there are several advantages to placing sensors in urban environments, including convenience of deployment and maintenance, and increasingly, necessity, as more previously rural areas become populated. This study seeks to characterize trends in low-frequency urban noise by creating a background noise model for Las Vegas, NV, using the Las Vegas Infrasound Array (LVIA): a network of eleven infrasound sensors deployed throughout the city. Data included in this study spans from 2019 to 2021 and provides a largely uninterrupted record of noise levels in the city from 0.1–500 Hz, with only minor discontinuities on individual stations. We organize raw data from the LVIA sensors into hourly power spectral density (PSD) averages for each station and select from these PSDs to create frequency distributions for time periods of interest . These frequency distributions are converted into probability density functions (PDFs), which are then used to evaluate variations in frequency and amplitude over daily to seasonal timescale s. In addition to PDFs, the median, 5th percentile, and 95th percentile amplitude values are calculated across the entire frequency range. This methodology follows a well-established process for noise model creation.

More Details

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Timothy D.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.

More Details

Interactive Unmanned Aircraft System (UAS) Security Workshop

Burr, Casey E.

The goal of this workshop is to role play and walk through various UAS incursion scenarios to: 1. Recognize the complex interactions between physical protection, response, and UAS technologies in a nuclear security event; 2. Identify potential regulatory and legal complications dealing with UAS as aircraft; 3. Identify communication/coordination touch points with facility security and law enforcement; 4. Identify possible physical security and response strategies to help mitigate UAS impact.

More Details

Quantifying the Known Unknown: Including Marine Sources of Greenhouse Gases in Climate Modeling

Frederick, Jennifer M.; Conley, Ethan W.; Nole, Michael A.; Marchitto, Thomas; Wagman, Benjamin M.

Researchers have recently estimated that Arctic submarine permafrost currently traps 60 billion tons of methane and contains 560 billion tons of organic carbon in seafloor sediments and soil, a giant pool of carbon with potentially large feedbacks on the climate system. Unlike terrestrial permafrost, the submarine permafrost system has remained a “known unknown” because of the difficulty in acquiring samples and measurements. Consequently, this potentially large carbon stock never yet considered in global climate models or policy discussions, represents a real wildcard in our understanding of Earth’s climate. This report summarizes our group’s effort at developing a numerical modeling framework designed to produce a first-of-its-kind estimate of Arctic methane gas releases from the marine sediments to the water column, and potentially to the atmosphere, where positive climate feedback may occur. Newly developed modeling capability supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories now gives us the ability to probabilistically map gas distribution and quantity in the seabed by using a hybrid approach of geospatial machine learning, and predictive numerical thermodynamic ensemble modeling. The novelty in this approach is its ability to produce maps of useful data in regions that are only sparsely sampled, a common challenge in the Arctic, and a major obstacle to progress in the past. By applying this model to the circum-Arctic continental shelves and integrating the flux of free gas from in situ methanogenesis and dissociating gas hydrates from the sediment column under climate forcing, we can provide the most reliable estimate of a spatially and temporally varying source term for greenhouse gas flux that can be used by global oceanographic circulation and Earth system models (such as DOE’s E3SM). The result will allow us to finally tackle the wildcard of the submarine permafrost carbon system, and better inform us about the severity of future national security threats that sustained climate change poses.

More Details

Large-scale frictionless jamming with power-law particle size distributions

Physical Review E

Monti, Joseph M.; Clemmer, Joel T.; Srivastava, Ishan; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings. The densest packings are obtained for size distributions that balance the relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude exponent power laws, all particle sizes participate in the mechanical stability of the packing.

More Details

Energy Storage for Manufacturing and Industrial Decarbonization (Energy StorM)

Ho, Clifford K.; Rao, Prakash; Iloeje, Nwike; Marschilok, Amy; Liaw, Boryann; Kaur, Sumanjeet; Slaughter, Julie; Hertz, Kristin L.; Wendt, Lynn; Supekar, Sarang; Montes, Marisa A.

This report summarizes the needs, challenges, and opportunities associated with carbon-free energy and energy storage for manufacturing and industrial decarbonization. Energy needs and challenges for different manufacturing and industrial sectors (e.g., cement/steel production, chemicals, materials synthesis) are identified. Key issues for industry include the need for large, continuous on-site capacity (tens to hundreds of megawatts), compatibility with existing infrastructure, cost, and safety. Energy storage technologies that can potentially address these needs, which include electrochemical, thermal, and chemical energy storage, are presented along with key challenges, gaps, and integration issues. Analysis tools to value energy storage technologies in the context of manufacturing and industrial decarbonizations are also presented. Material is drawn from the Energy Storage for Manufacturing and Industrial Decarbonization (Energy StorM) Workshop, held February 8 - 9, 2022. The objective was to identify research opportunities and needs for the U.S. Department of Energy as part of its Energy Storage Grand Challenge program.

More Details

Equipment Testing Environment (ETE) Process Specification

Hahn, Andrew S.; Karch, Benjamin K.; Bruneau, Robert J.; Rowland, Michael T.; Valme, Romuald V.

This document is intended to be utilized with the Equipment Test Environment being developed to provide a standard process by which the ETE can be validated. The ETE is developed with the intent of establishing cyber intrusion, data collection and through automation provide objective goals that provide repeatability. This testing process is being developed to interface with the Technical Area V physical protection system. The document will overview the testing structure, interfaces, device and network logging and data capture. Additionally, it will cover the testing procedure, criteria and constraints necessary to properly capture data and logs and record them for experimental data capture and analysis.

More Details

High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy

Metals

Ehler, Andrew; Dhiman, Abhijeet; Dillard, Tyler; Dingreville, Remi P.; Barrick, Erin J.; Kustas, Andrew K.; Tomar, Vikas

In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon Doppler Velocimetry (PDV) recordings of the velocity profiles find the EOS coefficients using an impedance mismatch technique. Following this set of measurements, laser-driven aluminum flyer plates are accelerated to velocities of 0.5–1.0 km/s using a high-energy pulse laser. Upon impact with CoCrFeMnNi samples, the shock response is found through PDV measurements of the free surface velocities. From this second set of measurements, the spall strength of the alloy is found for pressures up to 5 GPa and strain rates in excess of 106 s−1. Further analysis of the failure mechanisms behind the spallation is conducted using fractography revealing the occurrence of ductile fracture at voids presumed to be caused by chromium oxide deposits created during the manufacturing process.

More Details

Reviewing MACCS Capabilities for Assessing Tritium Releases to the Environment

Clavier, Kyle C.; Clayton, Daniel J.

Tritium has a unique physical and chemical behavior which causes it to be highly mobile in the environment. As it behaves similarly to hydrogen in the environment, it may also be readily incorporated into the water cycle and other biological processes. These factors and other environmental transformations may also cause the oxidation of an elemental tritium release, resulting in a multiple order of magnitude increase in dose coefficient and radiotoxicity. While source term development and understanding for advanced reactors are still underway, tritium may be a radionuclide of interest. It is thus important to understand how tritium moves through the environment and how the MACCS accident consequence code handles acute tritium releases in an accident scenario. Additionally, existing tritium models may have functionalities that could inform updates to MACCS to handle tritium. In this report tritium transport is reviewed and existing tritium models are summarized in view of potential updates to MACCS.

More Details

Time- and Energy-Resolved Coupled Saturn Radiation Environments Simulations Using the Integrated Tiger Series (ITS) Code

Depriest, Kendall D.; Pointon, Timothy D.; Sirajuddin, David S.; Ulmen, Benjamin A.

Using a newly developed coupling of the ElectroMagnetic Plasma In Realistic Environments (EMPIRE) code with the Integrated Tiger Series (ITS) code, radiation environment calculations have been performed. The effort was completed as part of the Saturn Recapitalization (Recap) program that represents activities to upgrade and modernize the Saturn accelerator facility. The radiation environment calculations performed provide baseline results with current or planned hardware in the facility. As facility design changes are proposed and implemented as part of Saturn Recap, calculations of the radiation environment will be performed to understand how the changes impact the output of the Saturn accelerator.

More Details

Harmonized Automatic Relay Mitigation of Nefarious Intentional Events (HARMONIE) - Special Protection Scheme (SPS)

Hossain-McKenzie, Shamina S.; Jacobs, Nicholas J.; Summers, Adam; Kolaczkowski, Bryan D.; Goes, Christopher E.; Fasano, Raymond E.; Mao, Zeyu; Al Homoud, Leen; Davis, Kate; Overbye, Thomas

The harmonized automatic relay mitigation of nefarious intentional events (HARMONIE) special protection scheme (SPS) was developed to provide adaptive, cyber-physical response to unpredictable disturbances in the electric grid. The HARMONIE-SPS methodology includes a machine learning classification framework that analyzes real time cyber-physical data and determines if the system is in normal conditions, cyber disturbance, physical disturbance, or cyber-physical disturbance. This classification then informs response, if needed and/or suitable, and included cyber-physical corrective actions. Beyond standard power system mitigations, a few novel approaches were developed that included a consensus algorithm-based relay voting scheme, an automated power system triggering condition and corrective action pairing algorithm, and a cyber traffic routing optimization algorithm. Both the classification and response techniques were tested within a newly integrated emulation environment composed of a real-time digital simulator (RTDS) and SCEPTRE™. This report details the HARMONIE-SPS methodology, highlighting both the classification and response techniques, and the subsequent testing results from the emulation environment.

More Details

Maximization of Laser Coupling with Cryogenic Targets

Geissel, Matthias G.; Hansen, Aaron; Harvey-Thompson, Adam J.; Weis, Matthew R.; Crabtree, Jerry A.; Ampleford, David A.; Beckwith, Kristian B.; Fein, Jeffrey R.; Gomez, Matthew R.; Hanson, Joseph C.; Jennings, Christopher A.; Kimmel, Mark W.; Maurer, A.; Rambo, Patrick K.; Shores, Jonathon S.; Smith, Ian C.; Speas, Robert J.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

Dynamics Informed Optimization for Resilient Energy Systems

Arguello, Bryan A.; Stewart, Nathan; Hoffman, Matthew J.; Nicholson, Bethany L.; Garrett, Richard A.; Moog, Emily R.

Optimal mitigation planning for highly disruptive contingencies to a transmission-level power system requires optimization with dynamic power system constraints, due to the key role of dynamics in system stability to major perturbations. We formulate a generalized disjunctive program to determine optimal grid component hardening choices for protecting against major failures, with differential algebraic constraints representing system dynamics (specifically, differential equations representing generator and load behavior and algebraic equations representing instantaneous power balance over the transmission system). We optionally allow stochastic optimal pre-positioning across all considered failure scenarios, and optimal emergency control within each scenario. This novel formulation allows, for the first time, analyzing the resilience interdependencies of mitigation planning, preventive control, and emergency control. Using all three strategies in concert is particularly effective at maintaining robust power system operation under severe contingencies, as we demonstrate on the Western System Coordinating Council (WSCC) 9-bus test system using synthetic multi-device outage scenarios. Towards integrating our modeling framework with real threats and more realistic power systems, we explore applying hybrid dynamics to power systems. Our work is applied to basic RL circuits with the ultimate goal of using the methodology to model protective tripping schemes in the grid. Finally, we survey mitigation techniques for HEMP threats and describe a GIS application developed to create threat scenarios in a grid with geographic detail.

More Details

Computational Response Theory for Dynamics

Steyer, Andrew S.

Quantifying the sensitivity - how a quantity of interest (QoI) varies with respect to a parameter – and response – the representation of a QoI as a function of a parameter - of a computer model of a parametric dynamical system is an important and challenging problem. Traditional methods fail in this context since sensitive dependence on initial conditions implies that the sensitivity and response of a QoI may be ill-conditioned or not well-defined. If a chaotic model has an ergodic attractor, then ergodic averages of QoIs are well-defined quantities and their sensitivity can be used to characterize model sensitivity. The response theorem gives sufficient conditions such that the local forward sensitivity – the derivative with respect to a given parameter - of an ergodic average of a QoI is well-defined. We describe a method based on ergodic and response theory for computing the sensitivity and response of a given QoI with respect to a given parameter in a chaotic model with an ergodic and hyperbolic attractor. This method does not require computation of ensembles of the model with perturbed parameter values. The method is demonstrated and some of the computations are validated on the Lorenz 63 and Lorenz 96 models.

More Details

Strategic Petroleum Reserve Cavern Leaching Monitoring CY21

Zeitler, Todd Z.; Ross, Tonya; Valdez, Raquel L.; Maurer, Hannah G.; Hart, David B.

Th e U.S. Strategic Petroleum Reserve (SPR) is a crude oil storage system administered by the U.S. Department of Energy. The reserve consists of 60 active storage caverns located in underground salt domes spread across four sites in Louisiana and Texas, near the Gulf of Mexico. Beginning in 2016, the SPR started executing C ongressionally mandated oil sales. The configuration of the reserve, with a total capacity of greater than 700 million barrels ( MMB ) , re quires that unsaturated water (referred to herein as ?raw? water) is injected into the storage caverns to displace oil for sales , exchanges, and drawdowns . As such, oil sales will produce cavern growth to the extent that raw water contacts the salt cavern walls and dissolves (leaches) the surrounding salt before reaching brine saturation. SPR injected a total of over 45 MMB of raw water into twenty - six caverns as part of oil sales in CY21 . Leaching effects were monitored in these caverns to understand how the sales operations may impact the long - term integrity of the caverns. While frequent sonars are the most direct means to monitor changes in cavern shape, they can be resource intensive for the number of caverns involved in sales and exchanges. An interm ediate option is to model the leaching effects and see if any concerning features develop. The leaching effects were modeled here using the Sandia Solution Mining Code , SANSMIC . The modeling results indicate that leaching - induced features do not raise co ncern for the majority of the caverns, 15 of 26. Eleven caverns, BH - 107, BH - 110, BH - 112, BH - 113, BM - 109, WH - 11, WH - 112, WH - 114, BC - 17, BC - 18, and BC - 19 have features that may grow with additional leaching and should be monitored as leaching continues in th ose caverns. Additionally, BH - 114, BM - 4, and BM - 106 were identified in previous leaching reports for recommendation of monitoring. Nine caverns had pre - and post - leach sonars that were compared with SANSMIC results. Overall, SANSMIC was able to capture the leaching well. A deviation in the SANSMIC and sonar cavern shapes was observed near the cavern floor in caverns with significant floor rise, a process not captured by SANSMIC. These results validate that SANSMIC continues to serve as a useful tool for mon itoring changes in cavern shape due to leaching effects related to sales and exchanges.

More Details

Model-Form Epistemic Uncertainty Quantification for Modeling with Differential Equations: Application to Epidemiology

Laros, James H.; Portone, Teresa P.; Dandekar, Raj; Rackauckas, Chris; Bandy, Rileigh J.; Huerta, Jose G.; Dytzel, India L.

Modeling real-world phenomena to any degree of accuracy is a challenge that the scientific research community has navigated since its foundation. Lack of information and limited computational and observational resources necessitate modeling assumptions which, when invalid, lead to model-form error (MFE). The work reported herein explored a novel method to represent model-form uncertainty (MFU) that combines Bayesian statistics with the emerging field of universal differential equations (UDEs). The fundamental principle behind UDEs is simple: use known equational forms that govern a dynamical system when you have them; then incorporate data-driven approaches – in this case neural networks (NNs) – embedded within the governing equations to learn the interacting terms that were underrepresented. Utilizing epidemiology as our motivating exemplar, this report will highlight the challenges of modeling novel infectious diseases while introducing ways to incorporate NN approximations to MFE. Prior to embarking on a Bayesian calibration, we first explored methods to augment the standard (non-Bayesian) UDE training procedure to account for uncertainty and increase robustness of training. In addition, it is often the case that uncertainty in observations is significant; this may be due to randomness or lack of precision in the measurement process. This uncertainty typically manifests as “noisy” observations which deviate from a true underlying signal. To account for such variability, the NN approximation to MFE is endowed with a probabilistic representation and is updated using available observational data in a Bayesian framework. By representing the MFU explicitly and deploying an embedded, data-driven model, this approach enables an agile, expressive, and interpretable method for representing MFU. In this report we will provide evidence that Bayesian UDEs show promise as a novel framework for any science-based, data-driven MFU representation; while emphasizing that significant advances must be made in the calibration of Bayesian NNs to ensure a robust calibration procedure.

More Details

Performance Evaluation of a Prototype Moving Packed-Bed Particle/sCO2 Heat Exchanger

Albrecht, Kevin J.; Laubscher, Hendrik F.; Bowen, Christopher P.; Ho, Clifford K.

Particle heat exchangers are a critical enabling technology for next generation concentrating solar power (CSP) plants that use supercritical carbon dioxide (sCO2) as a working fluid. This report covers the design, manufacturing and testing of a prototype particle-to-sCO2 heat exchanger targeting thermal performance levels required to meet commercial scale cost targets. In addition, the the design and assembly of integrated particle and sCO2 flow loops for heat exchanger performance testing are detailed. The prototype heat exchanger was tested to particle inlet temperatures of 500 °C at 17 MPa which resulted in overall heat transfer coefficients of approximately 300 W/m2-K at the design point and cases using high approach temperature with peak values as high as 400 W/m2-K

More Details

Computational Analysis of Coupled Geoscience Processes in Fractured and Deformable Media

Yoon, Hongkyu Y.; Kucala, Alec K.; Chang, Kyung W.; Martinez, Mario J.; Laros, James H.; Kadeethum, T.; Warren, Maria; Wilson, Jennifer E.; Broome, Scott T.; Stewart, Lauren K.; Estrada, Diana; Bouklas, Nicholas; Fuhg, Jan N.

Prediction of flow, transport, and deformation in fractured and porous media is critical to improving our scientific understanding of coupled thermal-hydrological-mechanical processes related to subsurface energy storage and recovery, nonproliferation, and nuclear waste storage. Especially, earth rock response to changes in pressure and stress has remained a critically challenging task. In this work, we advance computational capabilities for coupled processes in fractured and porous media using Sandia Sierra Multiphysics software through verification and validation problems such as poro-elasticity, elasto-plasticity and thermo-poroelasticity. We apply Sierra software for geologic carbon storage, fluid injection/extraction, and enhanced geothermal systems. We also significantly improve machine learning approaches through latent space and self-supervised learning. Additionally, we develop new experimental technique for evaluating dynamics of compacted soils at an intermediate scale. Overall, this project will enable us to systematically measure and control the earth system response to changes in stress and pressure due to subsurface energy activities.

More Details

Differential geometric approaches to momentum-based formulations for fluids [Slides]

Eldred, Christopher

This SAND report documents CIS Late Start LDRD Project 22-0311, "Differential geometric approaches to momentum-based formulations for fluids". The project primarily developed geometric mechanics formulations for momentum-based descriptions of nonrelativistic fluids, utilizing a differential geometry/exterior calculus treatment of momentum and a space+time splitting. Specifically, the full suite of geometric mechanics formulations (variational/Lagrangian, Lie-Poisson Hamiltonian and Curl-Form Hamiltonian) were developed in terms of exterior calculus using vector-bundle valued differential forms. This was done for a fairly general version of semi-direct product theory sufficient to cover a wide range of both neutral and charged fluid models, including compressible Euler, magnetohydrodynamics and Euler-Maxwell. As a secondary goal, this project also explored the connection between geometric mechanics formulations and the more traditional Godunov form (a hyperbolic system of conservation laws). Unfortunately, this stage did not produce anything particularly interesting, due to unforeseen technical difficulties. There are two publications related to this work currently in preparation, and this work will be presented at SIAM CSE 23, at which the PI is organizing a mini-symposium on geometric mechanics formulations and structure-preserving discretizations for fluids. The logical next step is to utilize the exterior calculus based understanding of momentum coupled with geometric mechanics formulations to develop (novel) structure-preserving discretizations of momentum. This is the main subject of a successful FY23 CIS LDRD "Structure-preserving discretizations for momentum-based formulations of fluids".

More Details
Results 3801–4000 of 96,771
Results 3801–4000 of 96,771