Publications

6 Results
Skip to search filters

Resilience Enhancements through Deep Learning Yields

Eydenberg, Michael S.; Batsch-Smith, Lisa B.; Bice, Charles T.; Blakely, Logan; Bynum, Michael L.; Boukouvala, Fani B.; Castillo, Anya C.; Haddad, Joshua H.; Hart, William E.; Jalving, Jordan H.; Kilwein, Zachary A.; Laird, Carl D.; Skolfield, Joshua K.

This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.

More Details

Perspectives on the integration between first-principles and data-driven modeling

Computers and Chemical Engineering

Bradley, William B.; Kim, Jinhyeun K.; Kilwein, Zachary A.; Blakely, Logan; Eydenberg, Michael S.; Jalving, Jordan H.; Laird, Carl D.; Boukouvala, Fani B.

Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is desired to simultaneously take advantage of both engineering principles and data-science. Further the opportunity for hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of the system; or the integration of a data-driven component approximating an unknown correlation within a mechanistic model. At the same time, different techniques have been proposed and applied in different literatures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and model calibration. In this paper we review the methods, challenges, applications and algorithms of these three research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a comprehensive comparison of the hybridization techniques with respect to their differences and similarities, as well as advantages and limitations and future perspectives. Finally, we apply and illustrate hybrid modeling, physics-informed ML and model calibration via a chemical reactor case study.

More Details

AC-Optimal Power Flow Solutions with Security Constraints from Deep Neural Network Models

Computer Aided Chemical Engineering

Kilwein, Zachary; Boukouvala, Fani; Laird, Carl D.; Castillo, Anya; Blakely, Logan; Eydenberg, Michael S.; Jalving, Jordan H.; Batsch-Smith, Lisa

In power grid operation, optimal power flow (OPF) problems are solved several times per day to find economically optimal generator setpoints that balance given load demands. Ideally, we seek an optimal solution that is also “N-1 secure”, meaning the system can absorb contingency events such as transmission line or generator failure without loss of service. Current practice is to solve the OPF problem and then check a subset of contingencies against heuristic values, resulting in, at best, suboptimal solutions. Unfortunately, online solution of the OPF problem including the full N-1 contingencies (i.e., two-stage stochastic programming formulation) is intractable for even modest sized electrical grids. To address this challenge, this work presents an efficient method to embed N-1 security constraints into the solution of the OPF by using Neural Network (NN) models to represent the security boundary. Our approach introduces a novel sampling technique, as well as a tuneable parameter to allow operators to balance the conservativeness of the security model within the OPF problem. Our results show that we are able to solve contingency formulations of larger size grids than reported in literature using non-linear programming (NLP) formulations with embedded NN models to local optimality. Solutions found with the NN constraint have marginally increased computational time but are more secure to contingency events.

More Details

Effects of Jacobian Matrix Regularization on the Detectability of Adversarial Samples

Eydenberg, Michael S.; Khanna, Kanad K.; Custer, Ryan C.

The well-known vulnerability of Deep Neural Networks to adversarial samples has led to a rapid cycle of increasingly sophisticated attack algorithms and proposed defenses. While most contemporary defenses have been shown to be vulnerable to carefully configured attacks, methods based on gradient regularization and out-of-distribution detection have attracted much interest recently by demonstrating higher resilience to a broad range of attack algorithms. However, no study has yet investigated the effect of combining these techniques. In this paper, we consider the effect of Jacobian matrix regularization on the detectability of adversarial samples on the CIFAR-10 image benchmark dataset. We find that regularization has a significant effect on detectability, and in some cases can make an undetectable attack on a baseline model detectable. In addition, we give evidence that regularization may mitigate the known weaknesses of detectors to high-confidence adversarial samples. The defenses we consider here are highly generalizable, and we believe they will be useful for further investigations to transfer machine learning robustness to other data domains.

More Details
6 Results
6 Results