Publications

Results 1–25 of 143

Search results

Jump to search filters

Increasing resilience with wastewater reuse

Nature Water

Klise, Katherine A.

Drinking water infrastructure in urban settings is increasingly affected by population growth and disruptions like extreme weather events. This study explores how the integration of direct wastewater reuse can help to maintain drinking water service when the system is compromised.

More Details

Socioeconomically-inspired modeling to justify use of fine-grain mobility data

Larsen, Sophie L.; Beyeler, Walter E.; Acquesta, Erin C.S.; Klise, Katherine A.; Finley, Patrick D.

When designing measures to control infectious disease spread, it is crucial to understand the structure of the population for which interventions are being implemented. Recent work has highlighted the need for models that incorporate demographic heterogeneity not just in age structure but also by socioeconomic status (SES). Appropriately capturing additional sources of population heterogeneity requires considerable data and model development. To understand the potential disagreement between SES-explicit or SES-agnostic disease models, we adapted Sandia’s Adaptive Recovery Model (ARM) model to consider differences in contact structure and mortality by Social Vulnerability Index (SVI) on a theoretical network. We also incorporated an Average network that did not consider SVI. By exploring disparities in vaccine and PPE uptake by SES and comparing to Average networks, as well as analyzing the influence of global vs. local contact, we found that the two model constructions often predicted different outcomes. Whether these differences are truly reflective of incorporating SES, and which model most closely represents reality, merits further investigation.

More Details

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

Evaluating Manual Sampling Locations for Regulatory and Emergency Response

Journal of Water Resources Planning and Management

Haxton, Terranna; Klise, Katherine A.; Laky, Daniel; Murray, Regan; Laird, Carl D.; Burkhardt, Jonathan B.

Drinking water systems commonly use manual or grab sampling to monitor water quality, identify or confirm issues, and verify that corrective or emergency response actions have been effective. In this paper, the effectiveness of regulatory sampling locations for emergency response is explored. An optimization formulation based on the literature was used to identify manual sampling locations to maximize overall nodal coverage of the system. Results showed that sampling locations could be effective in confirming incidents for which they were not designed. When evaluating sampling locations optimized for emergency response against regulatory scenarios, the average performance was reduced by 3%-4%, while using optimized regulatory sampling locations for emergency response reduced performance by 7%-10%. Secondary constraints were also included in the formulation to ensure geographical and water age diversity with minimal impact on the performance. This work highlighted that regulatory sampling locations provide value in responding to an emergency for these networks.

More Details

Analysis of mobility data to build contact networks for COVID-19

PLoS ONE

Klise, Katherine A.; Beyeler, Walter E.; Finley, Patrick D.; Makvandi, Monear

As social distancing policies and recommendations went into effect in response to COVID-19, people made rapid changes to the places they visit. These changes are clearly seen in mobility data, which records foot traffic using location trackers in cell phones. While mobility data is often used to extract the number of customers that visit a particular business or business type, it is the frequency and duration of concurrent occupancy at those sites that governs transmission. Understanding the way people interact at different locations can help target policies and inform contact tracing and prevention strategies. This paper outlines methods to extract interactions from mobility data and build networks that can be used in epidemiological models. Several measures of interaction are extracted: interactions between people, the cumulative interactions for a single person, and cumulative interactions that occur at particular businesses. Network metrics are computed to identify structural trends which show clear changes based on the timing of stay-at-home orders. Measures of interaction and structural trends in the resulting networks can be used to better understand potential spreading events, the percent of interactions that can be classified as close contacts, and the impact of policy choices to control transmission.

More Details
Results 1–25 of 143
Results 1–25 of 143