Publications

21 Results

Search results

Jump to search filters

Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations

Physical Review. B

Nikolov, Svetoslav V.; Nieves, Pablo; Thompson, Aidan P.; Wood, Mitchell A.; Tranchida, Julien

Here we present a classical molecular-spin dynamics (MSD) methodology that enables accurate computations of the temperature dependence of the magnetocrystalline anisotropy as well as magnetoelastic properties of magnetic materials. The nonmagnetic interactions are accounted for by a spectral neighbor analysis potential (SNAP) machine-learned interatomic potential, whereas the magnetoelastic contributions are accounted for using a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction model, representing both the exchange interaction and spin-orbit-coupling effects, respectively. All magnetoelastic potential components are parameterized using a combination of first-principles and experimental data. Our framework is applied to the α phase of iron. Initial testing of our MSD model is done using a 0 K parametrization of the Néel interaction model. After this, we examine how individual Néel parameters impact the $B$1 and $B$2 magnetostrictive coefficients using a moment-independent δ sensitivity analysis. The results from this study are then used to initialize a genetic algorithm optimization which explores the Néel parameter phase space and tries to minimize the error in the B1 and B2 magnetostrictive coefficients in the range of 0–1200 K. Our results show that while both the 0 K and genetic algorithm optimized parametrization provide good experimental agreement for $B$1 and $B$2, only the genetic algorithm optimized results can capture the second peak in the $B$1 magnetostrictive coefficient which occurs near approximately 800 K.

More Details

Quantum-Accurate Multiscale Modeling of Shock Hugoniots, Ramp Compression Paths, Structural and Magnetic Phase Transitions, and Transport Properties in Highly Compressed Metals

Wood, Mitchell A.; Nikolov, Svetoslav V.; Rohskopf, Andrew D.; Desjarlais, Michael P.; Cangi, Attila; Tranchida, Julien

Fully characterizing high energy density (HED) phenomena using pulsed power facilities (Z machine) and coherent light sources is possible only with complementary numerical modeling for design, diagnostic development, and data interpretation. The exercise of creating numerical tests, that match experimental conditions, builds critical insight that is crucial for the development of a strong fundamental understanding of the physics behind HED phenomena and for the design of next generation pulsed power facilities. The persistence of electron correlation in HED materials arising from Coulomb interactions and the Pauli exclusion principle is one of the greatest challenges for accurate numerical modeling and has hitherto impeded our ability to model HED phenomena across multiple length and time scales at sufficient accuracy. An exemplar is a ferromagnetic material like iron, while familiar and widely used, we lack a simulation capability to characterize the interplay of structure and magnetic effects that govern material strength, kinetics of phase transitions and other transport properties. Herein we construct and demonstrate the Molecular-Spin Dynamics (MSD) simulation capability for iron from ambient to earth core conditions, all software advances are open source and presently available for broad usage. These methods are multi-scale in nature, direct comparisons between high fidelity density functional theory (DFT) and linear-scaling MSD simulations is done throughout this work, with advancements made to MSD allowing for electronic structure changes being reflected in classical dynamics. Main takeaways for the project include insight into the role of magnetic spins on mechanical properties and thermal conductivity, development of accurate interatomic potentials paired with spin Hamiltonians, and characterization of the high pressure melt boundary that is of critical importance to planetary modeling efforts.

More Details

Dissociating the phononic, magnetic and electronic contributions to thermal conductivity: a computational study in alpha-iron

Journal of Materials Science

Nikolov, Svetoslav V.; Tranchida, Julien; Ramakrishna, Kushal; Lokamani, Mani; Cangi, Attila; Wood, Mitchell A.

Computational tools to study thermodynamic properties of magnetic materials have, until recently, been limited to phenomenological modeling or to small domain sizes limiting our mechanistic understanding of thermal transport in ferromagnets. Herein, we study the interplay of phonon and magnetic spin contributions to the thermal conductivity in a-iron utilizing non-equilibrium molecular dynamics simulations. It was observed that the magnetic spin contribution to the total thermal conductivity exceeds lattice transport for temperatures up to two-thirds of the Curie temperature after which only strongly coupled magnon-phonon modes become active heat carriers. Characterizations of the phonon and magnon spectra give a detailed insight into the coupling between these heat carriers, and the temperature sensitivity of these coupled systems. Comparisons to both experiments and ab initio data support our inferred electronic thermal conductivity, supporting the coupled molecular dynamics/spin dynamics framework as a viable method to extend the predictive capability for magnetic material properties.

More Details
21 Results
21 Results