Precise control of light-matter interactions at the nanoscale lies at the heart of nanophotonics. However, experimental examination at this length scale is challenging since the corresponding electromagnetic near-field is often confined within volumes below the resolution of conventional optical microscopy. In semiconductor nanophotonics, electromagnetic fields are further restricted within the confines of individual subwavelength resonators, limiting access to critical light-matter interactions in these structures. In this work, we demonstrate that photoelectron emission microscopy (PEEM) can be used for polarization-resolved near-field spectroscopy and imaging of electromagnetic resonances supported by broken-symmetry silicon metasurfaces. We find that the photoemission results, enabled through an in situ potassium surface layer, are consistent with full-wave simulations and far-field reflectance measurements across visible and near-infrared wavelengths. In addition, we uncover a polarization-dependent evolution of collective resonances near the metasurface array edge taking advantage of the far-field excitation and full-field imaging of PEEM. Here, we deduce that coupling between eight resonators or more establishes the collective excitations of this metasurface. All told, we demonstrate that the high-spatial resolution hyperspectral imaging and far-field illumination of PEEM can be leveraged for the metrology of collective, non-local, optical resonances in semiconductor nanophotonic structures.
Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs’ electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.
We investigated the electronic interactions between transition metal phthalocyanine (TMPc's) on a refractory transition metal nitride support, specifically copper phthalocyanine (CuPc) on titanium nitride (TiN). X-ray Photoelectron Spectroscopy (XPS) results suggest a presence of a few nanometer native oxide layer on the surface of the TiN nanoparticles, which consists of TiN, TiO2, and Titanium oxynitrides (TixOyNz). A TiNCuPc nanocomposite was synthesized via a simple mixing method due to the strong binding between CuPc and TiN confirmed by density functional theory (DFT) calculations. Both XPS data and DFT calculations revealed an electron transfer from TiN substrate to CuPc molecule. The nature of charge transfer is not influenced by the presence of an oxide layer on the surface of TiN. Substantial deviations are however found between photoelectron emission microscopy (PEEM) measured work function for TiN (4.68 eV) and theoretically calculated work function for pristine stoichiometric TiN (2.63 eV). This behavior is attributed to the presence of an oxide layer on the TiN surface. TiNCuPc composite system has a work function value between those of TiN and CuPc. Our studies open up an opportunity to apply a new class of materials based on transition metal phthalocyanine/transition metal nitride composites to catalysis and optoelectronic devices.
Structural disorder causes materials' surface electronic properties, e.g., work function (φ), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying φ = 5.70 ± 0.03 eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the φ distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler-Nordheim relation. We show that the φ spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local φ variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify φ. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole μ = 0.12 D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic φ and the nanostructure that may contribute to the spread of reported φ for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.
The controlled fabrication of vertical, tapered, and high-aspect ratio GaN nanowires via a two-step top-down process consisting of an inductively coupled plasma reactive ion etch followed by a hot, 85% H3PO4 crystallographic wet etch is explored. The vertical nanowires are oriented in the [0001] direction and are bound by sidewalls comprising of 3362 ¯ } semipolar planes which are at a 12° angle from the [0001] axis. High temperature H3PO4 etching between 60 °C and 95 °C result in smooth semipolar faceting with no visible micro-faceting, whereas a 50 °C etch reveals a micro-faceted etch evolution. High-angle annular dark-field scanning transmission electron microscopy imaging confirms nanowire tip dimensions down to 8–12 nanometers. The activation energy associated with the etch process is 0.90 ± 0.09 eV, which is consistent with a reaction-rate limited dissolution process. The exposure of the 3362 ¯ } type planes is consistent with etching barrier index calculations. The field emission properties of the nanowires were investigated via a nanoprobe in a scanning electron microscope as well as by a vacuum field emission electron microscope. The measurements show a gap size dependent turn-on voltage, with a maximum current of 33 nA and turn-on field of 1.92 V nm−1 for a 50 nm gap, and uniform emission across the array.
There is an intensive effort to control the nature of attractive interactions between ultrathin semiconductors and metals and to understand its impact on the electronic properties at the junction. Here, we present a photoelectron spectroscopy study on the interface between WS2 films and gold, with a focus on the occupied electronic states near the Brillouin zone center (i.e., the point). To delineate the spectra of WS2 supported on crystalline Au from the suspended WS2, we employ a microscopy approach and a tailored sample structure, in which the WS2/Au junction forms a semi-epitaxial relationship and is adjacent to suspended WS2 regions. The photoelectron spectra, as a function of WS2 thickness, display the expected splitting of the highest occupied states at the point. In multilayer WS2, we discovered variations in the electronic states that spatially align with the crystalline grains of underlying Au. Corroborated by density functional theory calculations, we attribute the electronic structure variations to stacking variations within the WS2 films. We propose that strong interactions exerted by Au grains cause slippage of the interfacing WS2 layer with respect to the rest of the WS2 film. Our findings illustrate that the electronic properties of transition metal dichalcogenides, and more generally 2D layered materials, are physically altered by the interactions with the interfacing materials, in addition to the electron screening and defects that have been widely considered.
The stability of low-index platinum surfaces and their electronic properties is investigated with density functional theory, toward the goal of understanding the surface structure and electron emission, and identifying precursors to electrical breakdown, on nonideal platinum surfaces. Propensity for electron emission can be related to a local work function, which, in turn, is intimately dependent on the local surface structure. The (1×N) missing row reconstruction of the Pt(110) surface is systematically examined. The (1×3) missing row reconstruction is found to be the lowest in energy, with the (1×2) and (1×4) slightly less stable. In the limit of large (1×N) with wider (111) nanoterraces, the energy accurately approaches the asymptotic limit of the infinite Pt(111) surface. This suggests a local energetic stability of narrow (111) nanoterraces on free Pt surfaces that could be a common structural feature in the complex surface morphologies, leading to work functions consistent with those on thermally grown Pt substrates.
The surfaces of textured polycrystalline N-type bismuth telluride and P-type antimony telluride materials were investigated using ex situ photoelectron emission microscopy (PEEM). PEEM enabled imaging of the work function for different oxidation times due to exposure to air across sample surfaces. The spatially averaged work function was also tracked as a function of air exposure time. N-type bismuth telluride showed an increase in the work function around grain boundaries relative to grain interiors during the early stages of air exposure-driven oxidation. At longer time exposure to air, the surface became homogenous after a ∼5 nm-thick oxide formed. X-ray photoemission spectroscopy was used to correlate changes in PEEM imaging in real space and work function evolution to the progressive growth of an oxide layer. The observed work function contrast is consistent with the pinning of electronic surface states due to the defects at a grain boundary.