Publications

Results 1–25 of 52

Search results

Jump to search filters

Excited-State Dynamics during Primary C–I Homolysis in Acetyl Iodide Revealed by Ultrafast Core-Level Spectroscopy

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Tross, Jan T.; Carter-Fenk, Kevin; Cole-Filipiak, Neil C.; Schrader, Paul E.; Word, Mi'Kayla; McCaslin, Laura M.; Head Gordon, Martin; Ramasesha, Krupa R.

In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to $nπ_{C=O}$$^*$ states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed $nπ_{C=O}$$^*$ and $nπ_{C–I}$$^*$ character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin–orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C–I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic ab initio molecular dynamics and EOM-CCSD calculations of the N$_{4,5}$ edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C–I homolysis. Here, by examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C–I bond photolysis in which d → σ* transitions give way to d → p excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4d → 5d transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental–theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin–orbit coupled system.

More Details

The Identity and Chemistry of C7H7 Radicals Observed during Soot Formation

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Rundel, James A.; Aliod, Carles; Zador, Judit Z.; Schrader, Paul E.; Johansson, Karl O.; Bambha, Ray B.; Buckingham, Grant; Porterfield, Jessica; Kostko, Oleg; Michelsen, Hope A.

Here we used aerosol mass spectrometry coupled with tunable synchrotron photoionization to measure radical and closed-shell species associated with particle formation in premixed flames and during pyrolysis of butane, ethylene, and methane. We analyzed photoionization (PI) spectra for the C7H7 radical to identify the isomers present during particle formation. For the combustion and pyrolysis of all three fuels, the PI spectra can be fit reasonably well with contributions from four radical isomers: benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl. Although there are significant experimental uncertainties in the isomeric speciation of C7H7, the results clearly demonstrate that the isomeric composition of C7H7 strongly depends on the combustion or pyrolysis conditions and the fuel or precursors. Fits to the PI spectra using reference curves for these isomers suggest that all of these isomers may contribute to m/z 91 in butane and methane flames, but only benzyl and vinylcyclopentadienyl contribute to the C7H7 isomer signal in the ethylene flame. Only tropyl and benzyl appear to play a role during pyrolytic particle formation from ethylene, and only tropyl, vinylcyclopentadienyl, and o-tolyl appear to participate during particle formation from butane pyrolysis. There also seems to be a contribution from an isomer with an ionization energy below 7.5 eV for the flames but not for the pyrolysis conditions. Kinetic models with updated and new reactions and rate coefficients for the C7H7 reaction network predict benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl to be the primary C7H7 isomers and predict negligible contributions from other C7H7 isomers. These updated models provide better agreement with the measurements than the original versions of the models but, nonetheless, underpredict the relative concentrations of tropyl, vinylcyclopentadienyl, and o-tolyl in both flames and pyrolysis and overpredict benzyl in pyrolysis. Our results suggest that there are additional important formation pathways for the vinylcyclopentadienyl, tropyl, and o-tolyl radicals and/or loss pathways for the benzyl radical that are currently unaccounted for in the present models.

More Details

Jet-entrainment sampling: A new method for extracting particles from flames

Proceedings of the Combustion Institute

Michelsen, Hope A.; Boigne, Emeric; Schrader, Paul E.; Johansson, K.O.; Campbell, Matthew F.; Bambha, Ray P.; Ihme, Matthias

We have developed a new method for extracting particulates and gas-phase species from flames. This technique involves directing a small jet of inert gas through the flame to entrain the sample, which is then collected by a probe on the other side of the flame. This sampling technique does not require inserting a probe or sampling surface into the flame and thus avoids effects on the flame due to conductive cooling by the probe and recombination, quenching, and deposition reactions at the sampling surface in contact with the flame. This approach thus allows for quenching and diluting the sample during extraction while minimizing the perturbations to the flame that have a substantial impact on flame chemistry. It also circumvents clogging of the probe with soot, a problem that commonly occurs when a probe is inserted into a hydrocarbon-rich premixed or diffusion flame. In this paper, we present experimental results demonstrating the application of this technique to the extraction of soot particles from a co-flow ethylene/air diffusion flame. The extracted samples were analyzed using transmission electron microscopy (TEM), and the results are compared with measurements using in situ diagnostics, i.e., laser-induced incandescence and small-angle X-ray scattering. We also compare TEM images of particles sampled using this approach with those sampled using rapid-insertion thermophoretic sampling, a common technique for extracting particles from flames. In addition, we have performed detailed numerical simulations of the flow field associated with this new sampling approach to assess the impact it has on the flame structure and sample following extraction. The results presented in this paper demonstrate that this jet-entrainment sampling technique has significant advantages over other common sample-extraction methods.

More Details

Proton Tunable Analog Transistor for Low Power Computing

Robinson, Donald A.; Foster, Michael R.; Bennett, Christopher H.; Bhandarkar, Austin B.; Fuller, Elliot J.; Stavila, Vitalie S.; Spataru, Dan C.; Krishnakumar, Raga K.; Cole-Filipiak, Neil C.; Schrader, Paul E.; Ramasesha, Krupa R.; Allendorf, Mark D.; Talin, A.A.

This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .

More Details

Soot-particle core-shell and fractal structures from small-angle X-ray scattering measurements in a flame

Carbon

Michelsen, Hope A.; Campbell, Matthew F.; Johansson, K.O.; Tran, Ich C.; Schrader, Paul E.; Bambha, Ray B.; Cenker, Emre; Hammons, Joshua A.; Zhu, Chenhui; Schaible, Eric; Van Buuren, Anthony

We have characterized soot particles measured in situ in a laminar co-flow ethylene-air diffusion flame using small-angle X-ray scattering (SAXS). The analysis includes temperature measurements made with coherent anti-Stokes Raman spectroscopy (CARS) and complements soot volume-fraction and maturity measurements made with laser-induced incandescence (LII). We compared the results of fits to the SAXS measurements using a unified model and a fractal core-shell model. Power-law parameters yielded by the unified model indicate that aggregates of primary particles are in the mass-fractal regime, whereas the primary particles are in the surface-fractal regime in the middle of the flame. Higher and lower in the flame, the primary-particle power-law parameter approaches 4, suggesting smooth primary particles. These trends are consistent with fits using the fractal core-shell model, which indicate that particles have an established core-shell structure in the middle of the flame and are internally homogeneous at higher and lower heights in the flame. Primary-particle size distributions derived using the fractal core-shell model demonstrate excellent agreement with distributions inferred from transmission electron microscopy (TEM) images in the middle of the flame. Higher in the flame, a second small mode appears in the size distributions, suggesting particle fragmentation during oxidation. Surface oxidation would explain (1) aggregate fragmentation and (2) loss of core-shell structure leading to smoother primary-particle surfaces by removal of carbon overlayers. SAXS measurements are much more sensitive to incipient and young soot particles than LII and demonstrate significant volume fraction from particles low in the flame where the LII signal is negligible.

More Details

Distinguishing Gas-Phase and Nanoparticle Contributions to Small-Angle X-ray Scattering in Reacting Aerosol Flows

Journal of Physical Chemistry A

Michelsen, Hope A.; Campbell, Matthew F.; Tran, Ich C.; Johansson, K.O.; Schrader, Paul E.; Bambha, Ray B.; Hammons, Joshua A.; Schaible, Eric; Zhu, Chenhui; Van Buuren, Anthony

We have developed a strategy for distinguishing between small-angle X-ray scattering (SAXS) from gas-phase species and newly formed nanoparticles in mixed gas- and particle-phase reacting flows. This methodology explicitly accounts for temperature-dependent scattering from gases. We measured SAXS in situ in a sooting linear laminar partially premixed co-flow ethylene/air diffusion flame. The scattering signal demonstrates a downward curvature as a function of the momentum transfer (q) at q values of 0.2-0.57 Å-1. The q-dependent curvature is consistent with the Debye equation and the independent-atom model for gas-phase scattering. This behavior can also be modeled using the Guinier approximation and could be characterized as a Guinier knee for gas-phase scattering. The Guinier functional form can be fit to the scattering signal in this q range without a priori knowledge of the gas-phase composition, enabling estimation of the gas-phase contribution to the scattering signal while accounting for changes in the gas-phase composition and temperature. We coupled the SAXS measurements with in situ temperature measurements using coherent anti-Stokes Raman spectroscopy. This approach to characterizing the gas-phase SAXS signal provides a physical basis for distinguishing among the contributions to the scattering signal from the instrument function, flame gases, and nanoparticles. The results are particularly important for the analysis of the SAXS signal in the q range associated with particles in the size range of 1-6 nm.

More Details

Ultrafast infrared transient absorption spectroscopy of gas-phase Ni(CO)4photodissociation at 261 nm

Journal of Chemical Physics

Cole-Filipiak, Neil C.; Tross, Jan T.; Schrader, Paul E.; McCaslin, Laura M.; Ramasesha, Krupa R.

We employ ultrafast mid-infrared transient absorption spectroscopy to probe the rapid loss of carbonyl ligands from gas-phase nickel tetracarbonyl following ultraviolet photoexcitation at 261 nm. Here, nickel tetracarbonyl undergoes prompt dissociation to produce nickel tricarbonyl in a singlet excited state; this electronically excited tricarbonyl loses another CO group over tens of picoseconds. Our results also suggest the presence of a parallel, concerted dissociation mechanism to produce nickel dicarbonyl in a triplet excited state, which likely dissociates to nickel monocarbonyl. Mechanisms for the formation of these photoproducts in multiple electronic excited states are theoretically predicted with one-dimensional cuts through the potential energy surfaces and computation of spin-orbit coupling constants using equation of motion coupled cluster methods (EOM-CC) and coupled cluster theory with single and double excitations (CCSD). Bond dissociation energies are calculated with CCSD, and anharmonic frequencies of ground and excited state species are computed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT).

More Details

Gas-Phase Hydrogen-Atom Measurement above Catalytic and Noncatalytic Materials during Ethane Dehydrogenation

Journal of Physical Chemistry C

Steinmetz, S.A.; Delariva, Andrew T.; Riley, Christopher R.; Schrader, Paul E.; Datye, Abhaya; Spoerke, Erik D.; Kliewer, Christopher J.

The role of a solid surface for initiating gas-phase reactions is still not well understood. The hydrogen atom (H) is an important intermediate in gas-phase ethane dehydrogenation and is known to interact with surface sites on catalysts. However, direct measurements of H near catalytic surfaces have not yet been reported. Here, we present the first H measurements by laser-induced fluorescence in the gas-phase above catalytic and noncatalytic surfaces. Measurements at temperatures up to 700 °C show H concentrations to be at the highest above inert quartz surfaces compared to stainless steel and a platinum-based catalyst. Additionally, H concentrations above the catalyst decreased rapidly with time on stream. These newly obtained observations are consistent with the recently reported differences in bulk ethane dehydrogenation reactivity of these materials, suggesting H may be a good reporter for dehydrogenation activity.

More Details

Table-Top High Photon Energy Sources for Chemical Dynamics Investigations

Ramasesha, Krupa R.; Tross, Jan T.; Schrader, Paul E.; Sheps, Leonid S.; Au, Kendrew

Time-resolved spectroscopies using high-energy photons in the vacuum ultraviolet (VUV) to the X-ray region of the electromagnetic spectrum, have proven to be powerful probes of chemical dynamics. These high-energy photons can access valence and core orbitals of molecules and materials, providing key information on molecular and electronic structure and their time evolution. This report details the development of table-top sources of extreme ultraviolet (XUV) and VUV pulses at Sandia National Laboratories for use in studies of gas phase chemical dynamics. Femtosecond duration XUV pulses are produced using laser-driven high harmonic generation and their detected range span ~40-140 eV photon energies. These pulses are used in conjunction with ultraviolet pulses in a pump-probe scheme to study excited state dynamics of gas phase molecules. VUV pulses at 7.75 eV are generated using a four-wave-mixing scheme driven by 800 nm and 266 nm pulses in an argon-filled hollow-core fiber.

More Details

Femtosecond Reflectance Spectroscopy for Energetic Material Diagnostics

Cole-Filipiak, Neil C.; Schrader, Paul E.; Luk, Ting S.; Ramasesha, Krupa R.

Understanding the fundamental mechanisms underpinning shock initiation is critical to predicting energetic material (EM) safety and performance. Currently, the timescales and pathways by which shock-excited lattice modes transfer energy into specific chemical bonds remains an open question. Towards understanding these mechanisms, our group has previously measured the vibrational energy transfer (VET) pathways in several energetic thin films using broadband, femtosecond transient absorption spectroscopy. However, new technologies are needed to move beyond these thin film surrogates and measure broadband VET pathways in realistic EM morphologies. Herein, we describe a new broadband, femtosecond, attenuated total reflectance spectroscopy apparatus. Performance of the system is benchmarked against published data and the first VET results from a pressed EM pellet are presented. This technology enables fundamental studies of VET dynamics across sample configurations and environments (pressure, temperature, etc .) and supports the potential use of VET studies in the non-destructive surveillance of EM components.

More Details

Ultraviolet photodissociation of gas-phase iron pentacarbonyl probed with ultrafast infrared spectroscopy

Journal of Chemical Physics

Cole-Filipiak, Neil C.; Tross, Jan T.; Schrader, Paul E.; McCaslin, Laura M.; Ramasesha, Krupa R.

It is well known that ultraviolet photoexcitation of iron pentacarbonyl results in rapid loss of carbonyl ligands leading to the formation of coordinatively unsaturated iron carbonyl compounds. We employ ultrafast mid-infrared transient absorption spectroscopy to probe the photodissociation dynamics of gas-phase iron pentacarbonyl following ultraviolet excitation at 265 and 199 nm. After photoexcitation at 265 nm, our results show evidence for sequential dissociation of iron pentacarbonyl to form iron tricarbonyl via a short-lived iron tetracarbonyl intermediate. Photodissociation at 199 nm results in the prompt production of Fe(CO)3 within 0.25 ps via several energetically accessible pathways. An additional 15 ps time constant extracted from the data is tentatively assigned to intersystem crossing to the triplet manifold of iron tricarbonyl or iron dicarbonyl. Mechanisms for formation of iron tetracarbonyl, iron tricarbonyl, and iron dicarbonyl are proposed and theoretically validated with one-dimensional cuts through the potential energy surface as well as bond dissociation energies. Ground state calculations are computed at the CCSD(T) level of theory and excited states are computed with EOM-EE-CCSD(dT).

More Details

Monitoring, Understanding, and Predicting the Growth of Methane Emissions in the Arctic

Bambha, Ray B.; Lafranchi, Brian W.; Schrader, Paul E.; Roesler, Erika L.; Taylor, Mark A.; Lucero, Daniel A.; Ivey, Mark D.; Michelsen, Hope A.

Concern over Arctic methane (CH4) emissions has increased following recent discoveries of poorly understood sources and predictions that methane emissions from known sources will grow as Arctic temperatures increase. New efforts are required to detect increases and explain sources without being confounded by the multiple sources. Methods for distinguishing different sources are critical. We conducted measurements of atmospheric methane and source tracers and performed baseline global atmospheric modeling to begin assessing the climate impact of changes in atmospheric methane. The goal of this project was to address uncertainties in Arctic methane sources and their potential impact on climate by (1) deploying newly developed trace-gas analyzers for measurements of methane, methane isotopologues, ethane, and other tracers of methane sources in the Barrow, AK, (2) characterizing methane sources using high-resolution atmospheric chemical transport models and tracer measurements, and (3) modeling Arctic climate using the state-of-the-art high- resolution Spectral Element Community Atmosphere Model (CAM-SE).

More Details

Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame

Carbon

Wang, Qi; Elvati, Paolo; Kim, Doohyun; Johansson, K.O.; Schrader, Paul E.; Michelsen, Hope A.; Violi, Angela

The complex environments that characterize combustion systems can influence the distribution of gas-phase species, the relative importance of various growth mechanisms and the chemical and physical characteristics of the soot precursors generated. In order to provide molecular insights on the effect of combustion environments on the formation of gas-phase species, in this paper, we study the temporal and spatial dependence of soot precursors growth mechanisms in an ethylene/oxygen/argon counterflow diffusion flame. As computational tools of investigation, we included fluid dynamics simulations and stochastic discrete modeling. Results show the relative importance of various reaction pathways in flame, with the hydrogen-abstraction-acetylene-addition mechanism contributing to the formation of pure hydrocarbons near the stagnation plane, and oxygen chemistry prevailing near the maximum temperature region, where the concentration of atomic oxygen reaches its peak and phenols, ethers and furan-embedded species are formed. The computational results show excellent agreement with measurements obtained using aerosol mass spectrometry coupled with vacuum-ultraviolet photoionization. Knowledge acquired in this study can be used to predict the type of compounds formed in various locations of the flame and eventually provide insights on the environmental parameters that influence the growth of soot precursors. Additionally, the results reported in this paper highlight the importance of modeling counterflow flames in two or three dimensions to capture the spatial dependence of growth mechanisms of soot precursors.

More Details

Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth

Science

Johansson, Karl O.; Head-Gordon, M.P.; Schrader, Paul E.; Wilson, K.R.; Michelsen, Hope A.

Mystery surrounds the transition from gas-phase hydrocarbon precursors to terrestrial soot and interstellar dust, which are carbonaceous particles formed under similar conditions. Although polycyclic aromatic hydrocarbons (PAHs) are known precursors to high-temperature carbonaceous-particle formation, the molecular pathways that initiate particle formation are unknown. We present experimental and theoretical evidence for rapid molecular clustering–reaction pathways involving radicals with extended conjugation. These radicals react with other hydrocarbon species to form covalently bound complexes that promote further growth and clustering by regenerating resonance-stabilized radicals through low-barrier hydrogen-abstraction and hydrogen-ejection reactions. Such radical–chain reaction pathways may lead to covalently bound clusters of PAHs and other hydrocarbons that would otherwise be too small to condense at high temperatures, thus providing the key mechanistic steps for rapid particle formation and surface growth by hydrocarbon chemisorption.

More Details

A small porous-plug burner for studies of combustion chemistry and soot formation

Review of Scientific Instruments

Campbell, M.F.; Schrader, Paul E.; Catalano, A.L.; Johansson, Karl O.; Bohlin, G.A.; Richards-Henderson, N.K.; Kliewer, Christopher J.; Michelsen, Hope A.

We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

More Details

Critical Assessment of Photoionization Efficiency Measurements for Characterization of Soot-Precursor Species

Journal of Physical Chemistry A

Johansson, Karl O.; Zador, Judit Z.; Elvati, Paolo; Campbell, Matthew F.; Schrader, Paul E.; Richards-Henderson, Nicole K.; Wilson, Kevin R.; Violi, Angela; Michelsen, Hope A.

We present a critical evaluation of photoionization efficiency (PIE) measurements coupled with aerosol mass spectrometry for the identification of condensed soot-precursor species extracted from a premixed atmospheric-pressure ethylene/oxygen/nitrogen flame. Definitive identification of isomers by any means is complicated by the large number of potential isomers at masses likely to comprise particles at flame temperatures. This problem is compounded using PIE measurements by the similarity in ionization energies and PIE-curve shapes among many of these isomers. Nevertheless, PIE analysis can provide important chemical information. For example, our PIE curves show that neither pyrene nor fluoranthene alone can describe the signal from C16H10 isomers and that coronene alone cannot describe the PIE signal from C24H12 species. A linear combination of the reference PIE curves for pyrene and fluoranthene yields good agreement with flame-PIE curves measured at 202 u, which is consistent with pyrene and fluoranthene being the two major C16H10 isomers in the flame samples, but does not provide definite proof. The suggested ratio between fluoranthene and pyrene depends on the sampling conditions. We calculated the values of the adiabatic-ionization energy (AIE) of 24 C16H10 isomers. Despite the small number of isomers considered, the calculations show that the differences in AIEs between several of the isomers can be smaller than the average thermal energy at room temperature. The calculations also show that PIE analysis can sometimes be used to separate hydrocarbon species into those that contain mainly aromatic rings and those that contain significant aliphatic content for species sizes investigated in this study. Our calculations suggest an inverse relationship between AIE and the number of aromatic rings. We have demonstrated that further characterization of precursors can be facilitated by measurements that test species volatility. (Graph Presented).

More Details

Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons

Journal of Physical Chemistry A

Johansson, Karl O.; Campbell, Matthew F.; Elvati, Paolo; Schrader, Paul E.; Zador, Judit Z.; Richards-Henderson, Nicole K.; Wilson, Kevin R.; Violi, Angela; Michelsen, Hope A.

We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.

More Details
Results 1–25 of 52
Results 1–25 of 52