Publications

5 Results
Skip to search filters

Using advanced data structures to enable responsive security monitoring

Cluster Computing

Vorobyeva, Janet; Delayo, Daniel R.; Bender, Michael A.; Farach-Colton, MartĂ­n; Pandey, Prashant; Phillips, Cynthia A.; Singh, Shikha; Thomas, Eric D.; Kroeger, Thomas M.

Write-optimized data structures (WODS), offer the potential to keep up with cyberstream event rates and give sub-second query response for key items like IP addresses. These data structures organize logs as the events are observed. To work in a real-world environment and not fill up the disk, WODS must efficiently expire older events. As the basis for our research into organizing security monitoring data, we implemented a tool, called Diventi, to index IP addresses in connection logs using RocksDB (a write-optimized LSM tree). We extended Diventi to automatically expire data as part of the data structures’ normal operations. We guarantee that Diventi always tracks the N most recent events and tracks no more than N+ k events for a parameter k< N, while ensuring the index is opportunistically pruned. To test Diventi at scale in a controlled environment, we used anonymized traces of IP communications collected at SuperComputing 2019. We synthetically extended the 2.4 billion connection events to 100 billion events. We tested Diventi vs. Elasticsearch, a common log indexing tool. In our test environment, Elasticsearch saw an ingestion rate of at best 37,000 events/s while Diventi sustained ingestion rates greater than 171,000 events/s. Our query response times were as much as 100 times faster, typically answering queries in under 80 ms. Furthermore, we saw no noticeable degradation in Diventi from expiration. We have deployed Diventi for many months where it has performed well and supported new security analysis capabilities.

More Details

Intrusion detection and monitoring for wireless networks

Vanrandwyk, Jamie V.; Thomas, Eric D.; Custer, Ryan C.; Lee, Erik L.; Kilman, Dominique K.; Franklin, Jason F.

Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

More Details
5 Results
5 Results