Publications

Results 1–25 of 50

Search results

Jump to search filters

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David B.

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

Microgrid Design Toolkit (MDT) Simple Use Case Example for Islanded Mode Optimization (Software v1.3)

Eddy, John P.; Gilletly, Samuel G.; Bandlow, Alisa B.

This simple Microgrid Design Toolkit (MDT) use case will provide you an example of a basic microgrid design. It will introduce basic principles of using the MDT islanded mode optimization by modifying a baseline microgrid design and performing an analysis of the results. Please reference the MDT User Guide (SAND2020-4550) for detailed instructions on how to use the tool.

More Details

Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 User's Manual

Adams, Brian M.; Bohnhoff, William J.; Dalbey, Keith D.; Ebeida, Mohamed S.; Eddy, John P.; Eldred, Michael S.; Hooper, Russell H.; Hough, Patricia D.; Hu, Kenneth H.; Jakeman, John D.; Khalil, Mohammad K.; Maupin, Kathryn A.; Monschke, Jason A.; Ridgway, Elliott M.; Rushdi, Ahmad R.; Seidl, Daniel T.; Stephens, John A.; Swiler, Laura P.; Winokur, Justin W.

The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

Microgrid Design Toolkit (MDT) User Guide. Software v1.3

Eddy, John P.; Gilletly, Samuel G.

The Microgrid Design Toolkit (MDT) supports decision analysis for new ("greenfield") microgrid designs as well as microgrids with existing infrastructure. The current version of MDT includes two main capabilities. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new, grid connected microgrid in the early stages of the design process. MSC is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on designing a microgrid for operation in islanded mode. This second capability relies on two models: the Technology Management Optimization (TMO) model and Performance Reliability Model (PRM).

More Details

RADIANCE Cybersecurity Plan: Generic Version

Mccarty, M.V.; Mix Sr.Mix; Knight, M.R.; Eddy, John P.; Johnson, Jay; Gonzalez, Sigifredo G.

Under its Grid Modernization Initiative, the U.S. Department of Energy (DOE), in collaboration with energy industry stakeholders developed a multi-year research plan to support modernizing the electric grid. One of the foundational projects for accelerating modernization efforts is information and communications technology interoperability. A key element of this project has been the development of a methodology for engaging ecosystems related to grid integration to create roadmaps that advance the ease of integration of related smart technology. This document is the product of activities undertaken in 2017 through 2019. It provides a Cybersecurity Plan describing the technology to be adopted in the project with details as per the GMLC Call document.

More Details

RADIANCE Cybersecurity Plan: Generic Version

Johnson, Jay; Eddy, John P.; Mccarty, Michael V.; Mix, Scott R.; Knight, Mark R.

Under its Grid Modernization Initiative, the U.S. Department of Energy(DOE),in collaboration with energy industry stakeholders developed a multi-year research plan to support modernizing the electric grid. One of the foundational projects for accelerating modernization efforts is information and communications technology interoperability. A key element of this project has been the development of a methodology for engaging ecosystems related to grid integration to create roadmaps that advance the ease of integration of related smart technology. This document is the product of activities undertaken in 2017 through 2019.It provides a Cybersecurity Plan describing the technology to be adopted in the project with details as per the GMLC Call document.

More Details

Assessment of Existing Capabilities and Future Needs for Designing Networked Microgrids

Hossain-McKenzie, Shamina S.; Reno, Matthew J.; Eddy, John P.; Schneider, Kevin P.

This is a review of existing microgrid design tool capabilities, such as the Microgrid Design Tool (MDT), LANL PNNL NRECA Optimal Resilience Model (LPNORM), Distributed Energy Resource-Customer Adoption Model (DER-CAM), Renewable Energy Optimization (REopt), and the Hybrid Optimization Model for Multiple Energy Resources (HOMER). Additionally, other simulation and analysis tools which may provide fundamental support will be examined. These will include GridLAB-DTM, OpenDSS, and the hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). Their applicability to networked microgrid operations will be evaluated, and strengths and gaps of existing tools will be identified. This review will help to determine which elements of the proposed optimal design and operations (OD&D) tool should be formulated from first principles, and which elements should be integrated from past DOE investments.

More Details

System of Systems Model Development for Evaluating EMP Resilient Grid Mitigation Strategies

Eddy, John P.; Jones, Katherine A.; Jeffers, Robert F.; Staid, Andrea S.

This Laboratory Directed Research and Development (LDRD) project focused on understanding the mathematical relationships that can be used in assessing the value of executing various EMP mitigation strategies on the grid. This is referred to as the EMP Resilient Grid Value Model. Because the range of mitigation strategies can contain widely differing characteristics (operational vs. technological), it is necessary to compute functions of many interrelated metrics at varying levels of fidelity that will be used to provide feedback as to the cost/benefit relationship of any proposed strategy. The value model is a hierarchical decomposition of a system of systems (SoS) model down to a grid circuit model. The model is intended to be suitable for use in subsequent decision support optimization for resilience to EMP events. The metric set goes beyond direct, technical impacts on the electrical grid to include ancillary impacts on dependent infrastructure and enterprise concerns (water, DoD, transportation, etc.).

More Details

Shungnak Energy Configuration Options

Rosewater, David M.; Eddy, John P.

Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

More Details

Microgrid Design Toolkit (MDT) Simple Use Case Example for Islanded Mode Optimization Software (V1.2)

Eddy, John P.

This simple Microgrid Design Toolkit ( MDT ) use case will provide you an example of a basic microgrid design. It will introduce basic principles of using the MDT islanded mode optimization by modifying a baseline microgrid design and performing an analysis of the results . Please reference the MDT User Guide (SAND201-9374) for detailed instructions on how to use the tool.

More Details

Microgrid Design Toolkit (MDT) User Guide Software v1.2

Eddy, John P.

The Microgrid Design Toolkit (MDT) supports decision analysis for new ("greenfield") microgrid designs as well as microgrids with existing infrastructure. The current version of MDT includes two main capabilities. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new, grid connected microgrid in the early stages of the design process. MSC is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on designing a microgrid for operation in islanded mode. This second capability relies on two models: the Technology Management Optimization (TMO) model and Performance Reliability Model (PRM).

More Details
Results 1–25 of 50
Results 1–25 of 50