The siting of nuclear waste is a process that requires consideration of concerns of the public. This report demonstrates the significant potential for natural language processing techniques to gain insights into public narratives around “nuclear waste.” Specifically, the report highlights that the general discourse regarding “nuclear waste” within the news media has fluctuated in prevalence compared to “nuclear” topics broadly over recent years, with commonly mentioned entities reflecting a limited variety of geographies and stakeholders. General sentiments within the “nuclear waste” articles appear to use neutral language, suggesting that a scientific or “facts-only” framing of “waste”-related issues dominates coverage; however, the exact nuances should be further evaluated. The implications of a number of these insights about how nuclear waste is framed in traditional media (e.g., regarding emerging technologies, historical events, and specific organizations) are discussed. This report lays the groundwork for larger, more systematic research using, for example, transformer-based techniques and covariance analysis to better understand relationships among “nuclear waste” and other nuclear topics, sentiments of specific entities, and patterns across space and time (including in a particular region). By identifying priorities and knowledge needs, these data-driven methods can complement and inform engagement strategies that promote dialogue and mutual learning regarding nuclear waste.
Sustainable use of water resources continues to be a challenge across the globe. This is in part due to the complex set of physical and social behaviors that interact to influence water management from local to global scales. Analyses of water resources have been conducted using a variety of techniques, including qualitative evaluations of media narratives. This study aims to augment these methods by leveraging computational and quantitative techniques from the social sciences focused on text analyses. Specifically, we use natural language processing methods to investigate a large corpus (approx. 1.8M) of newspaper articles spanning approximately 35 years (1982–2017) for insights into human-nature interactions with water. Focusing on local and regional United States publications, our analysis demonstrates important dynamics in water-related dialogue about drinking water and pollution to other critical infrastructures, such as energy, across different parts of the country. Our assessment, which looks at water as a system, also highlights key actors and sentiments surrounding water. Extending these analytical methods could help us further improve our understanding of the complex roles of water in current society that should be considered in emerging activities to mitigate and respond to resource conflicts and climate change.
This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.
There is a wealth of psychological theory regarding the drive for individuals to congregate and form social groups, positing that people may organize out of fear, social pressure, or even to manage their self-esteem. We evaluate three such theories for multi-scale validity by studying them not only at the individual scale for which they were originally developed, but also for applicability to group interactions and behavior. We implement this multi-scale analysis using a dataset of communications and group membership derived from a long-running online game, matching the intent behind the theories to quantitative measures that describe players’ behavior. Once we establish that the theories hold for the dataset, we increase the scope to test the theories at the higher scale of group interactions. Despite being formulated to describe individual cognition and motivation, we show that some group dynamics theories hold at the higher level of group cognition and can effectively describe the behavior of joint decision making and higher-level interactions.