Publications

Results 1–25 of 137

Search results

Jump to search filters

Modeling the acoustic noise from a wave energy converter farm and its impact on marine mammals at the PacWave South site, offshore Newport Oregon

Renewable Energy

Harding, Jennifer L.; Preston, Leiph A.; Johnson, Erick; Roberts, Jesse D.; Jones, Craig A.; Raghukumar, Kaus; Hafla, Erin

Marine hydrokinetic devices, such as wave energy converters (WECs), can unlock untapped energy from the ocean's currents and waves. Acoustic impact assessments are required to ensure that the noise these devices generate will not negatively impact marine life, and accurate modeling of noise provides an a priori means to viably perform this assessment. We present a case study of the PacWave South site, a WEC testing site off the coast of Newport, Oregon, demonstrating the use of ParAcousti, an open-source hydroacoustic propagator tool, to model noise from an array of 28 WECs in a 3-dimensional (3-D) realistic marine environment. Sound pressure levels are computed from the modeled 3-D grid of pressure over time, which we use to predict marine mammal acoustic impact metrics (AIMs). We combine two AIMs, signal to noise ratio and sensation level, into a new metric, the effective signal level (ESL), which is a function of propagated sound, background noise levels, and hearing thresholds for marine species and is evaluated across 1/3 octave frequency intervals. The ESL model can be used to predict and quantify the potential impact of an anthropogenic signal on the health and behavior of a marine mammal species throughout the 3-D simulation area.

More Details

Adapting the Technology Performance Level Integrated Assessment Framework to Low-TRL Technologies Within the Carbon Capture, Utilization, and Storage Industry, Part I

Frontiers in Climate

Mendoza, Nicole; Mathai, Thomas; Boren, Blake; Roberts, Jesse D.; Niffenegger, James; Sick, Volker; Zimmermann, Arno W.; Weber, Jochem; Schaidle, Joshua

With the urgent need to mitigate climate change and rising global temperatures, technological solutions that reduce atmospheric CO2 are an increasingly important part of the global solution. As a result, the nascent carbon capture, utilization, and storage (CCUS) industry is rapidly growing with a plethora of new technologies in many different sectors. There is a need to holistically evaluate these new technologies in a standardized and consistent manner to determine which technologies will be the most successful and competitive in the global marketplace to achieve decarbonization targets. Life cycle assessment (LCA) and techno-economic assessment (TEA) have been employed as rigorous methodologies for quantitatively measuring a technology's environmental impacts and techno-economic performance, respectively. However, these metrics evaluate a technology's performance in only three dimensions and do not directly incorporate stakeholder needs and values. In addition, technology developers frequently encounter trade-offs during design that increase one metric at the expense of the other. The technology performance level (TPL) combined indicator provides a comprehensive and holistic assessment of an emerging technology's potential, which is described by its techno-economic performance, environmental impacts, social impacts, safety considerations, market/deployability opportunities, use integration impacts, and general risks. TPL incorporates TEA and LCA outputs and quantifies the trade-offs between them directly using stakeholder feedback and requirements. In this article, the TPL methodology is being adapted from the marine energy domain to the CCUS domain. Adapted metrics and definitions, a stakeholder analysis, and a detailed foundation-based application of the systems engineering approach to CCUS are presented. The TPL assessment framework is couched within the internationally standardized LCA framework to improve technical rigor and acceptance. It is demonstrated how stakeholder needs and values can be directly incorporated, how LCA and TEA metrics can be balanced, and how other dimensions (listed earlier) can be integrated into a single metric that measures a technology's potential.

More Details

Marine energy environmental permitting and compliance costs

Energies

Peplinski, William J.; Roberts, Jesse D.; Klise, Geoffrey T.; Kramer, Sharon; Barr, Zach; West, Anna; Jones, Craig

Costs to permit Marine Energy projects are poorly understood. In this paper we examine environmental compliance and permitting costs for 19 projects in the U.S., covering the last 2 decades. Guided discussions were conducted with developers over a 3-year period to obtain historical and ongoing project cost data relative to environmental studies (e.g., baseline or pre-project site characterization as well as post-installation effects monitoring), stakeholder outreach, and mitigation, as well as qualitative experience of the permitting process. Data are organized in categories of technology type, permitted capacity, pre-and post-installation, geographic location, and funding types. We also compare our findings with earlier logic models created for the Department of Energy (i.e., Reference Models). Environmental studies most commonly performed were for Fish and Fisheries, Noise, Marine Habitat/Benthic Studies and Marine Mammals. Studies for tidal projects were more expensive than those performed for wave projects and the range of reported project costs tended to be wider than ranges predicted by logic models. For eight projects reporting full project costs, from project start to FERC or USACE permit, the average amount for environmental permitting compliance was 14.6%.

More Details

Turbulence-parameter estimation for current-energy converters using surrogate model optimization

Renewable Energy

Olson, Sterling S.; Su, Jack C.P.; Silva, Humberto; Chartrand, Chris C.; Roberts, Jesse D.

Surrogate models maximize information utility by building predictive models in place of computational or experimentally expensive model runs. Marine hydrokinetic current energy converters require large-domain simulations to estimate array efficiencies and environmental impacts. Meso-scale models typically represent turbines as actuator discs that act as momentum sinks and sources of turbulence and its dissipation. An OpenFOAM model was developed where actuator disc k-ε turbulence was characterized using an approach developed for flows through vegetative canopies. Turbine-wake data from laboratory flume experiments collected at two influent turbulence intensities were used to calibrate parameters in the turbulence-source terms in the k-ε equations. Parameter influences on longitudinal wake profiles were estimated using Gaussian process regression with subsequent optimization minimizing the objective function within 3.1% of those obtained using the full model representation, but for 74% of the computational cost (far fewer model runs). This framework facilitates more efficient parameterization of the turbulence-source equations using turbine-wake data.

More Details

Lessons Learned Based on SNL Experience in Reviews of SPA Controls Awardees

Schoenwald, David A.; Roberts, Jesse D.; Dallman, Ann R.

This report summarizes the key contributions and lessons learned from SNL experience in technical reviews of Controls awardees in the DOE SPA program from 2013 - 2020. The purpose of this report is to provide observations and technical suggestions that are likely to be beneficial to the WEC industry as a whole. Over the course of the SPA FOA program, SNL has engaged in technical review for a total of 5 different Controls awardees. The awardees represent a diversity of WEC devices and the application of different control design approaches. The report begins with a summary of key performance metrics results reported by the 5 Controls awardees. This is followed by a summary of observations and lessons learned distilled from the technical reviews of the awardees . The report concludes with a list of general technical suggestions for future WEC controls projects.

More Details

The performance of a spectral wave model at predicting wave farm impacts

Energies

Cameron Mcnatt, J.; Porter, Aaron; Chartrand, Chris C.; Roberts, Jesse D.

For renewable ocean wave energy to support global energy demands, wave energy converters (WECs) will likely be deployed in large numbers (farms), which will necessarily change the nearshore environment. Wave farm induced changes can be both helpful (e.g., beneficial habitat and coastal protection) and potentially harmful (e.g., degraded habitat, recreational, and commercial use) to existing users of the coastal environment. It is essential to estimate this impact through modeling prior to the development of a farm, and to that end, many researchers have used spectral wave models, such as Simulating WAves Nearshore (SWAN), to assess wave farm impacts. However, the validity of the approaches used within SWAN have not been thoroughly verified or validated. Herein, a version of SWAN, called Sandia National Laboratories (SNL)-SWAN, which has a specialized WEC implementation, is verified by comparing its wave field outputs to those of linear wave interaction theory (LWIT), where LWIT is theoretically more appropriate for modeling wave-body interactions and wave field effects. The focus is on medium-sized arrays of 27 WECs, wave periods, and directional spreading representative of likely conditions, as well as the impact on the nearshore. A quantitative metric, the Mean Squared Skill Score, is used. Results show that the performance of SNL-SWAN as compared to LWIT is “Good” to “Excellent”.

More Details

Environmental permitting and compliance cost reduction strategies for the MHK industry: Lessons learned from other industries

Journal of Marine Science and Engineering

Kramer, Sharon; Jones, Craig; Klise, Geoffrey T.; Roberts, Jesse D.; West, Anna; Barr, Zach

The marine and hydrokinetic (MHK) industry plays a vital role in the U.S. clean energy strategy by providing a renewable, domestic energy source that may offset the need for traditional energy sources. The first MHK deployments in the U.S. have incurred very high permitting costs and long timelines for deploying projects, which increases project risk and discourages investment. A key challenge to advancing an economically competitive U.S. MHK industry is reducing the time and cost required for environmental permitting and compliance with government regulations. Other industries such as offshore oil and gas, offshore wind energy, subsea power and data cables, onshore wind energy, and solar energy facilities have all developed more robust permitting and compliance pathways that provide lessons for the MHK industry in the U.S. and may help inform the global consenting process. Based on in-depth review and research into each of the other industries, we describe the environmental permitting pathways, the main environmental concerns and types of monitoring typically associated with them, and factors that appear to have eased environmental permitting and compliance issues.

More Details

Wave data assimilation in support of wave energy converter powerprediction: Yakutat, Alaska case study

Proceedings of the Annual Offshore Technology Conference

Dallman, Ann R.; Khalil, Mohammad K.; Raghukumar, Kaus; Jones, Craig; Kasper, Jeremy; Flanary, Christopher; Chang, Grace; Roberts, Jesse D.

Integration of renewable power sources into grids remains an active research and development area,particularly for less developed renewable energy technologies such as wave energy converters (WECs).WECs are projected to have strong early market penetration for remote communities, which serve as naturalmicrogrids. Hence, accurate wave predictions to manage the interactions of a WEC array with microgridsis especially important. Recently developed, low-cost wave measurement buoys allow for operationalassimilation of wave data at remote locations where real-time data have previously been unavailable. This work includes the development and assessment of a wave modeling framework with real-time dataassimilation capabilities for WEC power prediction. The availability of real-time wave spectral componentsfrom low-cost wave measurement buoys allows for operational data assimilation with the Ensemble Kalmanfilter technique, whereby measured wave conditions within the numerical wave forecast model domain areassimilated onto the combined set of internal and boundary grid points while taking into account model andobservation error covariances. The updated model state and boundary conditions allow for more accuratewave characteristic predictions at the locations of interest. Initial deployment data indicated that measured wave data from one buoy that were assimilated intothe wave modeling framework resulted in improved forecast skill for a case where a traditional numericalforecast model (e.g., Simulating WAves Nearshore; SWAN) did not well represent the measured conditions.On average, the wave power forecast error was reduced from 73% to 43% using the data assimilationmodeling with real-time wave observations.

More Details

Wave data assimilation in support of wave energy converter powerprediction: Yakutat, Alaska case study

Proceedings of the Annual Offshore Technology Conference

Dallman, Ann R.; Khalil, Mohammad K.; Raghukumar, Kaus; Jones, Craig; Kasper, Jeremy; Flanary, Christopher; Chang, Grace; Roberts, Jesse D.

Integration of renewable power sources into grids remains an active research and development area,particularly for less developed renewable energy technologies such as wave energy converters (WECs).WECs are projected to have strong early market penetration for remote communities, which serve as naturalmicrogrids. Hence, accurate wave predictions to manage the interactions of a WEC array with microgridsis especially important. Recently developed, low-cost wave measurement buoys allow for operationalassimilation of wave data at remote locations where real-time data have previously been unavailable. This work includes the development and assessment of a wave modeling framework with real-time dataassimilation capabilities for WEC power prediction. The availability of real-time wave spectral componentsfrom low-cost wave measurement buoys allows for operational data assimilation with the Ensemble Kalmanfilter technique, whereby measured wave conditions within the numerical wave forecast model domain areassimilated onto the combined set of internal and boundary grid points while taking into account model andobservation error covariances. The updated model state and boundary conditions allow for more accuratewave characteristic predictions at the locations of interest. Initial deployment data indicated that measured wave data from one buoy that were assimilated intothe wave modeling framework resulted in improved forecast skill for a case where a traditional numericalforecast model (e.g., Simulating WAves Nearshore; SWAN) did not well represent the measured conditions.On average, the wave power forecast error was reduced from 73% to 43% using the data assimilationmodeling with real-time wave observations.

More Details

Big Wheel Farm: Farmland Scour Reduction

Olson, Sterling S.; Chartrand, Chris C.; Roberts, Jesse D.

Flood irrigation benefits from low infrastructure costs and maintenance but the scour near the weirs can cause channeling of the flow preventing the water from evenly dispersing across the field. Using flow obstructions in front of the weir could reduce be a low cost solution to reduce the scour. The mitigation strategy was to virtually simulate the effects of various geometric changes to the morphology (e.g. holes and bumps) in front of the weir as a means to diffuse the high intensity flow coming from the gate. After running a parametric study for the dimensions of the shapes that included a Gaussian, semi-circle, and rectangle; a Gaussian-hole in front of the gates showed the most promise to reduce farm field shear-stresses with the added benefit of being easy to construct and implement in practice. Further the simulations showed that the closer the Gaussian-hole could be placed to the gate the sooner the high shear stress could be reduced. To realize the most benefit from this mitigation strategy, it was determined that the maximum depth of the Gaussian-hole should be 0.5 m. The width of the hole in the flow direction and the length of the Gaussian-hole normal to the flow should be 0.5 m and 3 m respectively as measured by the full width at half maximum.

More Details

Reducing variability in the cost of energy of ocean energy arrays

Renewable and Sustainable Energy Reviews

Topper, Mathew B.R.; Nava, Vincenzo; Collin, Adam J.; Bould, David; Ferri, Francesco; Olson, Sterling S.; Dallman, Ann R.; Roberts, Jesse D.; Jeffrey, Henry F.

Variability in the predicted cost of energy of an ocean energy converter array is more substantial than for other forms of energy generation, due to the combined stochastic action of weather conditions and failures. If the variability is great enough, then this may influence future financial decisions. This paper provides the unique contribution of quantifying variability in the predicted cost of energy and introduces a framework for investigating reduction of variability through investment in components. Following review of existing methodologies for parametric analysis of ocean energy array design, the development of the DTOcean software tool is presented. DTOcean can quantify variability by simulating the design, deployment and operation of arrays with higher complexity than previous models, designing sub-systems at component level. A case study of a theoretical floating wave energy converter array is used to demonstrate that the variability in levelised cost of energy (LCOE) can be greatest for the smallest arrays and that investment in improved component reliability can reduce both the variability and most likely value of LCOE. A hypothetical study of improved electrical cables and connectors shows reductions in LCOE up to 2.51% and reductions in the variability of LCOE of over 50%; these minima occur for different combinations of components.

More Details
Results 1–25 of 137
Results 1–25 of 137