Publications

Results 1–25 of 183

Search results

Jump to search filters

Spectroscopic evaluation of tribologically-induced changes in surface chemistry of Zr-based bulk metallic glass

Applied Surface Science

Lien, Hsu M.; Chandross, Michael E.; Mangolini, Filippo

Bulk metallic glasses (BMGs) are promising structural materials owing to their high elastic limit and yield strength-to-weight ratio. While BMGs also exhibit attractive tribological properties (e.g., high wear resistance), the scientific basis for this behavior is not yet established. In particular, tribologically-induced changes in surface chemistry upon sliding are still an open topic of research. Here, we evaluated by X-ray photoelectron spectroscopy (XPS) the evolution of the surface chemistry of Vitreloy 105 (a Zr-rich BMG) upon sliding under different contact conditions against a tungsten carbide countersurface. The spectroscopic results indicate that the relative fraction of the metallic elements in the near-surface region is not affected by the sliding speed when the applied contact pressure is lower than 1.37 GPa, while a decrease in metallic zirconium was observed at lower sliding speeds and higher applied contact pressure (i.e., 1.71 GPa). Based on the spectroscopic results, a model is proposed for the effect of mechanical stress on the extent of oxidation of the near-surface region of Zr-based BMGs. The results of this work provide novel insights into the surface phenomena occurring on BMGs upon sliding and add significantly to our understanding of the tribological response of this class of promising structural materials.

More Details

A data-driven multiscale model for reactive wetting simulations

Computers and Fluids

Horner, Jeffrey S.; Winter, Ian; Kemmenoe, David J.; Arata, Edward R.; Chandross, Michael E.; Roberts, Scott A.; Grillet, Anne M.

We describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop's composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material's wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.

More Details

Interactions of Water with Pristine and Defective MoS2

Langmuir

Bobbitt, Nathaniel S.; Chandross, Michael E.

Molybdenum disulfide (MoS2) is a lamellar solid lubricant often used in aerospace applications because of its extremely low friction coefficient (∼0.01) in inert environments. The lubrication performance of MoS2 is significantly impaired by exposure to even small amounts of water and oxygen, and the mechanisms behind this remain poorly understood. We use density functional theory calculations to study the binding of water on MoS2 sheets with and without defects. In general, we find that pristine MoS2 is slightly hydrophilic but that defects greatly increase the binding affinity for water. Intercalated water disrupts the crystal structure of bulk MoS2 due to the limited space between lamellae (∼3.4 Å), and this leads to generally unfavorable adsorption, except in the cases where water molecules are located on the sites of sulfur vacancies. We also find that water adsorption is more favorable directly below a surface layer of MoS2 compared to in the bulk.

More Details
Results 1–25 of 183
Results 1–25 of 183