Modeling of Glass-Ceramic Materials and Components
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We demonstrate the ability to measure R-curves of brittle materials using a method adapted from Theo Fett et al. The method is validated with a NIST standard reference material and demonstrated using Si3N4 of two different microstructures; glass-ceramic, and PZT. As expected, each material's R-curve is seen to be slightly different with glass-ceramics showing the most pronounced R-curve effects. Plans for future applications and experimental efforts are discussed.
Journal of the American Ceramic Society
(Pb0.98, La0.02)(Zr0.95, Ti0.05)O3 (PLZT) thin films of 300 nm thickness were epitaxially deposited on (100), (110), and (111) SrTiO3 single crystal substrates by pulsed laser deposition. X-ray diffraction line and reciprocal space mapping scans were used to determine the crystal structure. Tetragonal ((001) PLZT) and monoclinic MA ((011) and (111) PLZT) structures were found, which influenced the stored energy density. Electric field-induced antiferroelectric to ferroelectric (AFE→FE) phase transitions were found to have a large reversible energy density of up to 30 J/cm3. With increasing temperature, an AFE to relaxor ferroelectric (AFE→RFE) transition was found. The RFE phase exhibited lower energy loss, and an improved energy storage efficiency. The results are discussed from the perspective of crystal structure, dielectric phase transitions, and energy storage characteristics. Besides, unipolar drive was also performed, providing notably higher energy storage efficiency values due to low energy losses.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energy Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the American Ceramic Society
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (