Publications

Results 1–25 of 53

Search results

Jump to search filters

Investigation of R-Curve Behavior in Glass Ceramic Materials

Grutzik, Scott J.; Strong, Kevin T.; Dai, Steve X.

We demonstrate the ability to measure R-curves of brittle materials using a method adapted from Theo Fett et al. The method is validated with a NIST standard reference material and demonstrated using Si3N4 of two different microstructures; glass-ceramic, and PZT. As expected, each material's R-curve is seen to be slightly different with glass-ceramics showing the most pronounced R-curve effects. Plans for future applications and experimental efforts are discussed.

More Details

Phase transition and energy storage behavior of antiferroelectric PLZT thin films epitaxially deposited on SRO buffered STO single crystal substrates

Journal of the American Ceramic Society

Dai, Steve X.; Gao, Min; Tang, Xiao; Leung, Chung M.; Viswan, Ravindranath; Li, Jiefang; Viehland, Dwight D.

(Pb0.98, La0.02)(Zr0.95, Ti0.05)O3 (PLZT) thin films of 300 nm thickness were epitaxially deposited on (100), (110), and (111) SrTiO3 single crystal substrates by pulsed laser deposition. X-ray diffraction line and reciprocal space mapping scans were used to determine the crystal structure. Tetragonal ((001) PLZT) and monoclinic MA ((011) and (111) PLZT) structures were found, which influenced the stored energy density. Electric field-induced antiferroelectric to ferroelectric (AFE→FE) phase transitions were found to have a large reversible energy density of up to 30 J/cm3. With increasing temperature, an AFE to relaxor ferroelectric (AFE→RFE) transition was found. The RFE phase exhibited lower energy loss, and an improved energy storage efficiency. The results are discussed from the perspective of crystal structure, dielectric phase transitions, and energy storage characteristics. Besides, unipolar drive was also performed, providing notably higher energy storage efficiency values due to low energy losses.

More Details

Assessing the Validity of the Simplified Potential Energy Clock Model for Modeling Glass-Ceramics

Jamison, Ryan D.; Grillet, Anne M.; Stavig, Mark E.; Strong, Kevin T.; Dai, Steve X.

Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energy Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.

More Details

Sealing glass-ceramics with near linear thermal strain, Part II: Sequence of crystallization and phase stability

Journal of the American Ceramic Society

Dai, Steve X.; Rodriguez, Mark A.; Griego, James J.M.

A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion ( CTE ), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li 2 O–SiO 2 –Al 2 O 3 –K 2 O–B 2 O 3 –P 2 O 5 –ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1 st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO 2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.

More Details
Results 1–25 of 53
Results 1–25 of 53