Publications

Results 1–25 of 55

Search results

Jump to search filters

Machine learning at the edge to improve in-field safeguards inspections

Annals of Nuclear Energy

Shoman, Nathan; Williams, Kyle A.; Balsara, Burzin; Ramakrishnan, Adithya; Kakish, Zahi K.; Coram, Jamie L.; Honnold, Philip H.; Rivas, Tania; Smartt, Heidi A.

Artificial intelligence (AI) and machine learning (ML) are near-ubiquitous in day-to-day life; from cars with automated driver-assistance, recommender systems, generative content platforms, and large language chatbots. Implementing AI as a tool for international safeguards could significantly decrease the burden on safeguards inspectors and nuclear facility operators. The use of AI would allow inspectors to complete their in-field activities quicker, while identifying patterns and anomalies and freeing inspectors to focus on the uniquely human component of inspections. Sandia National Laboratories has spent the past two and a half years developing on-device machine learning to develop both a digital and robotic assistant. This combined platform, which we term INSPECTA, has numerous on-device machine learning capabilities that have been demonstrated at the laboratory scale. This work describes early successes implementing AI/ML capabilities to reduce the burden of tedious inspector tasks such as seal examination, information recall, note taking, and more.

More Details

The Power of Priors: Improved Enrichment Safeguards

Shoman, Nathan; Honnold, Philip H.

International safeguards currently rely on material accountancy to verify that declared nuclear material is present and unmodified. Although effective, material accountancy for large bulk facilities can be expensive to implement due to the high precision instrumentation required to meet regulatory targets. Process monitoring has long been considered to improve material accountancy. However, effective integration of process monitoring has been met with mixed results. Given the large successes in other domains, machine learning may present a solution for process monitoring integration. Past work has shown that unsupervised approaches struggle due to measurement error. Although not studied in depth for a safeguards context, supervised approaches often have poor generalization for unseen classes of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for training, can improve the generalization of supervised approaches. Further, the underlying models needed to generate these datasets need only accurately model certain high importance features.

More Details

Inspecta Annual Technical Report

Smartt, Heidi A.; Coram, Jamie L.; Dorawa, Sydney D.; Laros, James H.; Honnold, Philip H.; Kakish, Zahi K.; Pickett, Chris A.; Shoman, Nathan; Spence, Katherine P.

Sandia National Laboratories (SNL) is designing and developing an Artificial Intelligence (AI)-enabled smart digital assistant (SDA), Inspecta (International Nuclear Safeguards Personal Examination and Containment Tracking Assistant). The goal is to provide inspectors an in-field digital assistant that can perform tasks identified as tedious, challenging, or prone to human error. During 2021, we defined the requirements for Inspecta based on reviews of International Atomic Energy Agency (IAEA) publications and interviews with former IAEA inspectors. We then mapped the requirements to current commercial or open-source technical capabilities to provide a development path for an initial Inspecta prototype while highlighting potential research and development tasks. We selected a highimpact inspection task that could be performed by an early Inspecta prototype and are developing the initial architecture, including hardware platform. This paper describes the methodology for selecting an initial task scenario, the first set of Inspecta skills needed to assist with that task scenario and finally the design and development of Inspecta’s architecture and platform.

More Details

Results from Invoking Artificial Neural Networks to Measure Insider Threat Detection & Mitigation

Digital Threats: Research and Practice

Williams, Adam D.; Laros, James H.; Shoman, Nathan; Charlton, William S.

Advances on differentiating between malicious intent and natural "organizational evolution"to explain observed anomalies in operational workplace patterns suggest benefit from evaluating collective behaviors observed in the facilities to improve insider threat detection and mitigation (ITDM). Advances in artificial neural networks (ANN) provide more robust pathways for capturing, analyzing, and collating disparate data signals into quantitative descriptions of operational workplace patterns. In response, a joint study by Sandia National Laboratories and the University of Texas at Austin explored the effectiveness of commercial artificial neural network (ANN) software to improve ITDM. This research demonstrates the benefit of learning patterns of organizational behaviors, detecting off-normal (or anomalous) deviations from these patterns, and alerting when certain types, frequencies, or quantities of deviations emerge for improving ITDM. Evaluating nearly 33,000 access control data points and over 1,600 intrusion sensor data points collected over a nearly twelve-month period, this study's results demonstrated the ANN could recognize operational patterns at the Nuclear Engineering Teaching Laboratory (NETL) and detect off-normal behaviors - suggesting that ANNs can be used to support a data-analytic approach to ITDM. Several representative experiments were conducted to further evaluate these conclusions, with the resultant insights supporting collective behavior-based analytical approaches to quantitatively describe insider threat detection and mitigation.

More Details
Results 1–25 of 55
Results 1–25 of 55