Publications

Results 1–25 of 91

Search results

Jump to search filters

Two Circuits for Directing and Controlling Ballistic Fluxons

IEEE Transactions on Applied Superconductivity

Lewis, Rupert; Frank, Michael P.

Reversible logic schemes using flux solitons (fluxons) on long Josephson junctions (LJJs) have recently been proposed. The attraction of the fluxon is that it propagates ballistically along an LJJ until it encounters a change in the character of the LJJ, often a designed circuit element. Logic gates involve fluxons interacting with circuit elements and with other fluxons. However, testing of ballistic fluxon circuits requires other circuits outside the logic family to direct and control fluxon motion. We discuss two such non-reversible fluxon control circuits. First, the polarity filter gate is a simple non-reversible gate that allows one polarity of fluxon to pass, while reflecting the other polarity. In the off state both polarities reflect. Second, the polarity separator generalizes on the polarity filter concept and allows separation of the two fluxon polarities into different LJJs. We discuss simulations of these structures and possible applications.

More Details

Auditable, Available and Resilient Private Computation on the Blockchain via MPC

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Cordi, Christopher; Frank, Michael P.; Gabert, Kasimir G.; Helinski, Carollan B.; Laros, James H.; Kolesnikov, Vladimir; Ladha, Abrahim; Pattengale, Nicholas D.

Simple but mission-critical internet-based applications that require extremely high reliability, availability, and verifiability (e.g., auditability) could benefit from running on robust public programmable blockchain platforms such as Ethereum. Unfortunately, program code running on such blockchains is normally publicly viewable, rendering these platforms unsuitable for applications requiring strict privacy of application code, data, and results. In this work, we investigate using MPC techniques to protect the privacy of a blockchain computation. While our main goal is to hide both the data and the computed function itself, we also consider the standard MPC setting where the function is public. We describe GABLE (Garbled Autonomous Bots Leveraging Ethereum), a blockchain MPC architecture and system. The GABLE architecture specifies the roles and capabilities of the players. GABLE includes two approaches for implementing MPC over blockchain: Garbled Circuits (GC), evaluating universal circuits, and Garbled Finite State Automata (GFSA). We formally model and prove the security of GABLE implemented over garbling schemes, a popular abstraction of GC and GFSA from (Bellare et al., CCS 2012). We analyze in detail the performance (including Ethereum gas costs) of both approaches and discuss the trade-offs. We implement a simple prototype of GABLE and report on the implementation issues and experience.

More Details

Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Frank, Michael P.; Lewis, Rupert

In recent years we have been exploring a novel asynchronous, ballistic physical model of reversible computing, variously termed ABRC (Asynchronous Ballistic Reversible Computing) or BARC (Ballistic Asynchronous Reversible Computing). In this model, localized information-bearing pulses propagate bidi-rectionally along nonbranching interconnects between I/O ports of stateful circuit elements, which carry out reversible transformations of the local digital state. The model appears suitable for implementation in superconducting circuits, using the naturally quantized configuration of magnetic flux in the circuit to encode digital information. One of the early research thrusts in this effort involves the enumeration and classification, at an abstract theoretical level, of the distinct possible reversible digital functional behaviors that primitive BARC circuit elements may exhibit, given the applicable conservation and symmetry constraints in superconducting implementations. In this paper, we describe the motivations for this work, outline our research methodology, and summarize some of the noteworthy preliminary results to date from our theoretical study of BARC elements for bipolarized pulses, and having up to three I/O ports and two internal digital states.

More Details

Logical and Physical Reversibility of Conservative Skyrmion Logic

IEEE Magnetics Letters

Hu, Xuan; Walker, Benjamin W.; Garcia-Sanchez, Felipe; Edwards, Alexander J.; Zhou, Peng; Incorvia, Jean A.C.; Paler, Alexandru; Frank, Michael P.; Friedman, Joseph S.

Magnetic skyrmions are nanoscale whirls of magnetism that can be propagated with electrical currents. The repulsion between skyrmions inspires their use for reversible computing based on the elastic billiard ball collisions proposed for conservative logic in 1982. In this letter, we evaluate the logical and physical reversibility of this skyrmion logic paradigm, as well as the limitations that must be addressed before dissipation-free computation can be realized.

More Details

Auditable, Available and Resilient Private Computation on the Blockchain via MPC

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Cordi, Christopher; Frank, Michael P.; Gabert, Kasimir G.; Helinski, Carollan B.; Laros, James H.; Kolesnikov, Vladimir; Ladha, Abrahim; Pattengale, Nicholas D.

Simple but mission-critical internet-based applications that require extremely high reliability, availability, and verifiability (e.g., auditability) could benefit from running on robust public programmable blockchain platforms such as Ethereum. Unfortunately, program code running on such blockchains is normally publicly viewable, rendering these platforms unsuitable for applications requiring strict privacy of application code, data, and results. In this work, we investigate using MPC techniques to protect the privacy of a blockchain computation. While our main goal is to hide both the data and the computed function itself, we also consider the standard MPC setting where the function is public. We describe GABLE (Garbled Autonomous Bots Leveraging Ethereum), a blockchain MPC architecture and system. The GABLE architecture specifies the roles and capabilities of the players. GABLE includes two approaches for implementing MPC over blockchain: Garbled Circuits (GC), evaluating universal circuits, and Garbled Finite State Automata (GFSA). We formally model and prove the security of GABLE implemented over garbling schemes, a popular abstraction of GC and GFSA from (Bellare et al., CCS 2012). We analyze in detail the performance (including Ethereum gas costs) of both approaches and discuss the trade-offs. We implement a simple prototype of GABLE and report on the implementation issues and experience.

More Details

Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Frank, Michael P.; Lewis, Rupert

In recent years we have been exploring a novel asynchronous, ballistic physical model of reversible computing, variously termed ABRC (Asynchronous Ballistic Reversible Computing) or BARC (Ballistic Asynchronous Reversible Computing). In this model, localized information-bearing pulses propagate bidi-rectionally along nonbranching interconnects between I/O ports of stateful circuit elements, which carry out reversible transformations of the local digital state. The model appears suitable for implementation in superconducting circuits, using the naturally quantized configuration of magnetic flux in the circuit to encode digital information. One of the early research thrusts in this effort involves the enumeration and classification, at an abstract theoretical level, of the distinct possible reversible digital functional behaviors that primitive BARC circuit elements may exhibit, given the applicable conservation and symmetry constraints in superconducting implementations. In this paper, we describe the motivations for this work, outline our research methodology, and summarize some of the noteworthy preliminary results to date from our theoretical study of BARC elements for bipolarized pulses, and having up to three I/O ports and two internal digital states.

More Details

Quantum foundations of classical reversible computing

Entropy

Frank, Michael P.; Shukla, Karpur

The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.

More Details

Quantum Foundations of Classical Reversible Computing

Entropy

Frank, Michael P.; Shukla, Karpur

The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.

More Details
Results 1–25 of 91
Results 1–25 of 91