Electric-to-Electric Moving Particle Thermal Energy Storage (PARTICLE)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of ASME 2024 18th International Conference on Energy Sustainability, ES 2024
Concentrating solar power (CSP) plants with integrated thermal energy storage (TES) have successfully been coupled with photovoltaics (PV) + chemical battery energy storage (BES) in recent commercial-scale projects to balance system cost and diurnal power availability. Sandia National Laboratories has been tasked with designing an advanced solar energy system to power Kirtland Air Force Base (KAFB) where Sandia is co-located in Albuquerque, NM, USA. This design process requires optimization of individual components and capacities of the hybrid system. Preliminary modeling efforts have shown that a hybrid CSP+TES/PV+BES in Albuquerque, NM is sufficient for net-zero power generation for Sandia/KAFB for the next decade. However, the ability to meet the load in real-time (and minimize energy export) requires balance of generation and storage assets. Our results also show that excess PV used to charge TES improves resilience and overall renewables-to-load for the system. Here we will present the results of a parametric study varying the land use proportions of CSP and PV, and TES and BES capacities. We evaluate the effects of these variables on energy generation, real-time load satisfaction, site resilience to grid outages, and LCOE, to determine viable hybrid solar energy designs and their cost implications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of ASME 2023 17th International Conference on Energy Sustainability, ES 2023
This study investigated the durability of four high temperature coatings for use as a Gardon gauge foil coating. Failure modes and effects analysis have identified Gardon gauge foil coating as a critical component for the development of a robust flux gauge for high intensity flux measurements. Degradation of coating optical properties and physical condition alters flux gauge sensitivity, resulting in flux measurement errors. In this paper, four coatings were exposed to solar and thermal cycles to simulate real-world aging. Solar simulator and box furnace facilities at the National Solar Thermal Test Facility (NSTTF) were utilized in separate test campaigns. Coating absorptance and emissivity properties were measured and combined into a figure of merit (FOM) to characterize the optical property stability of each coating, and physical coating degradation was assessed qualitatively using microscope images. Results suggest rapid high temperature cycling did not significantly impact coating optical properties and physical state. In contrast, prolonged exposure of coatings to high temperatures degraded coating optical properties and physical state. Coatings degraded after 1 hour of exposure at temperatures above 400 °C and stabilized after 6-24 hours of exposure. It is concluded that the combination of high temperatures and prolonged exposure provide the energy necessary to sustain coating surface reactions and alter optical and physical coating properties. Results also suggest flux gauge foil coatings could benefit from long duration high temperature curing (>400 °C) prior to sensor calibration to stabilize coating properties and increase measurement reliability in high flux and high temperature applications.
Proceedings of ASME 2023 17th International Conference on Energy Sustainability, ES 2023
A comprehensive control strategy is necessary to safely and effectively operate particle based concentrating solar power (CSP) technologies. Particle based CSP with thermal energy storage (TES) is an emerging technology with potential to decarbonize power and process heat applications. The high-temperature nature of particle based CSP technologies and daily solar transients present challenges for system control to prevent equipment damage and ensure operator safety. An operational controls strategy for a tower based particle CSP system during steady state and transient conditions with safety interlocks is described in this paper. Control of a solar heated particle recirculation loop, TES, and a supercritical carbon dioxide (sCO2) cooling loop designed to reject 1 MW of thermal power are considered and associated operational limitations and their influence on control strategy are discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.