Rapid assessment of laser weld heat affected zone liquation cracking susceptibility in chromium boride-containing austenitic stainless steel
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts
Investigations of mechanical shear driven organic film formation, or tribofilms, on catalytic metal surfaces in sliding electrical contacts date back to Hermance and Egan's seminal work on mated palladium contacts. In this report we describe investigations of tribofilm formation from outgassing epoxy vapors, consisting of multiple siloxane species, and from isolated constituent species including octamethyltrisiloxane (OMTS). Experiments performed in varying vapor concentrations of OMTS resulted in the formation of tribopolymer films with similar morphology and impact on electrical contact resistance (ECR) as previously published results of sliding electrical contacts in similar conditions submerged in higher molecular weight polymethyldisiloxane (PDMS) fluid. Infrared (IR) spectroscopy was used to confirm the characteristic signatures of siloxanes and silanes in tribopolymer deposits found in wear scars formed in OMTS. Comparisons to prior studies also showed that the films formed from outgassing epoxy vapor constituents (including OMTS and a multitude of other species) have similar characteristics to the silicon-carbon-oxygen (Si-C-O) films previously found to form in high molecular weight PDMS fluid-filled devices. Tribopolymer formation was demonstrated for a range of electrical contact alloy mated pairs (Paliney-7, Neyoro-G, NiPtRe). Experiments in increasing concentrations of OMTS vapor showed that a persistent tribofilm is rapidly formed under cyclic sliding contact shear that can interrupt electrical current, with a formation rate that increases with increasing concentration. Overall, this work demonstrates the ease with which trace organics can promote the formation of insulating tribopolymer films in electrical contacts and factors that can influence their growth.
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
A survey of cadmium plated field return hardware showed ubiquitous cadmium whisker growth. The most worn and debris-covered hardware showed the densest whisker growth. Whiskers were often found growing in agglomerates of nodules and whiskers. The hardware was rinsed with alcohol to transfer whiskers and debris from the hardware to a flat stub. Fifty whiskers were studied individually by scanning electron microscopy (SEM), including energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD). Most of the whiskers were single crystal, though three were found to contain grain boundaries at kinks. The whiskers ranged from 5 to 600 μm in length and 80 pct showed a <1 ¯ 2 1 ¯ 0> type growth direction. This growth direction facilitates the development of low energy side faces of the whisker, (0001) and {1010}.
JOM
Soft-magnetic alloys exhibit exceptional functional properties that are beneficial for a variety of electromagnetic applications. These alloys are conventionally manufactured into sheet or bar forms using well-established insgot metallurgy practices that involve hot- and cold-working steps. However, recent developments in process metallurgy have unlocked opportunities to directly produce bulk soft-magnetic alloys with improved, and often tailorable, structure–property relationships that are unachievable conventionally. The emergence of unconventional manufacturing routes for soft-magnetic alloys is largely motivated by the need to improve the energy efficiency of electromagnetic devices. In this review, literature that details emerging manufacturing approaches for soft-magnetic alloys is overviewed. This review covers (1) severe plastic deformation, (2) recent advances in melt spinning, (3) powder-based methods, and (4) additive manufacturing. These methods are discussed in comparison with conventional rolling and bar processing. Perspectives and recommended future research directions are also discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Manufacturing Letters
The mechanical performance of an Fe-Co intermetallic alloy processed by laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED) additive manufacturing is compared. L-PBF material was characterized by high strength (500–550 MPa) and high ductility (35%) in tension, corresponding to a ~250% increase in strength and an order-of-magnitude improvement in ductility relative to conventional material. Conversely, L-DED material exhibited similarly poor tensile properties to the conventional wrought alloy, with low strength (200–300 MPa) and low ductility (0–2.7%). The disparity in properties between L-PBF and L-DED material is discussed in the context of the fundamental differences between manufacturing methods.
Abstract not provided.
Journal of the Acoustical Society of America
This study employs nonlinear ultrasonic techniques to track microstructural changes in additively manufactured metals. The second harmonic generation technique based on the transmission of Rayleigh surface waves is used to measure the acoustic nonlinearity parameter, β. Stainless steel specimens are made through three procedures: traditional wrought manufacturing, laser-powder bed fusion, and laser engineered net shaping. The β parameter is measured through successive steps of an annealing heat treatment intended to decrease dislocation density. Dislocation density is known to be sensitive to manufacturing variables. In agreement with fundamental material models for the dislocation-acoustic nonlinearity relationship in the second harmonic generation, β drops in each specimen throughout the heat treatment before recrystallization. Geometrically necessary dislocations (GNDs) are measured from electron back-scatter diffraction as a quantitative indicator of dislocations; average GND density and β are found to have a statistical correlation coefficient of 0.852 showing the sensitivity of β to dislocations in additively manufactured metals. Moreover, β shows an excellent correlation with hardness, which is a measure of the macroscopic effect of dislocations.
Abstract not provided.
Materials Science and Engineering: A
Additive manufacturing via selective laser melting can result in variable levels of internal porosity both between build plates and within components from the same build. In this investigation, sample porosity levels were compared to tensile properties for 176 samples spanning eight different build plates. Sample porosity was measured both by Archimedes density, which provided an estimation of overall porosity, and by observation of voids in the fracture surface, which provided an estimation of the porosity at the failure plane. The porosity observed at the fracture surface consistently demonstrated higher porosity than that suggested by Archimedes density. The porosity values obtained from both methods were compared against the mechanical results. Sample porosity appears to have some correlation to the ultimate tensile strength, yield strength, and modulus, but the strongest relationship is observed between porosity and ductility. Three different models were used to relate the fracture surface porosity to the ductility. The first method was a simple linear regression analysis, while the other two models have been used to relate porosity to ductility in cast alloys. It is shown that all three models fit the data well over the observed porosity ranges, suggesting that the models taken from casting theory can extend to additively manufactured metals. Finally, it is proposed that the non-destructive Archimedes method could be used to estimate an approximate sample ductility through the use of correlations realized here. Such a relationship could prove useful for design and for a deeper understanding of the impact of pores on tensile behavior.
Additive Manufacturing
Additive Manufacturing (AM) presents unprecedented opportunities to enable design freedom in parts that are unachievable via conventional manufacturing. However, AM-processed components generally lack the necessary performance metrics for widespread commercial adoption. We present a novel AM processing and design approach using removable heat sink artifacts to tailor the mechanical properties of traditionally low strength and low ductility alloys. The design approach is demonstrated with the Fe-50 at.% Co alloy, as a model material of interest for electromagnetic applications. AM-processed components exhibited unprecedented performance, with a 300 % increase in strength and an order-of-magnitude improvement in ductility relative to conventional wrought material. These results are discussed in the context of product performance, production yield, and manufacturing implications toward enabling the design and processing of high-performance, next-generation components, and alloys.
Journal of Dynamic Behavior of Materials
Soft ferromagnetic alloys are often utilized in electromagnetic applications due to their desirable magnetic properties. In support of these applications, the ferromagnetic alloys are also required to bear mechanical load under various loading and environmental conditions. In this study, a Fe–49Co–2V alloy was dynamically characterized in tension with a Kolsky tension bar and a Drop–Hopkinson bar at various strain rates and temperatures. Dynamic tensile stress–strain curves of the Fe–49Co–2V alloy were obtained at strain rates ranging from 40 to 230 s−1 and temperatures from − 100 to 100 °C. All dynamic tensile stress–strain curves exhibited an initial linear elastic response to an upper yield followed by Lüders band response and then a nearly linear work-hardening behavior. The yield strength of this material was found to be sensitive to both strain rate and temperature, whereas the hardening rate was independent of strain rate or temperature. The Fe–49Co–2V alloy exhibited a feature of brittle fracture in tension under dynamic loading with no necking being observed.
Social Science Research Network (SSRN)
Equal channel angular extrusion (ECAE) of 49Fe-49Co-2V, also known as Hiperco® 50A or Permendur-2V, greatly improves the strength and ductility of this alloy, while sacrificing soft magnetic performance. In this work, ECAE Hiperco specimens were subjected to post-ECAE annealing in order to improve soft magnetic properties. The microstructure, mechanical properties, and magnetic performance are summarized in this study. Annealing begins above 650°C and a steep decline in yield strength is observed for heat treatments between 700 and 840°C due to grain growth and the Hall-Petch effect, although some strength benefit is still observed in fully annealed ECAE material compared to conventionally processed bar. Soft magnetic properties were assessed through B-H hysteresis curves from which coercivity (Hc) values were extracted. Hc decreases rapidly with annealing above 650°C as well, i.e. improved soft magnetic behavior. The observed trend is attributed to annealing and grain growth in this temperature regime, which facilitates magnetic domain wall movement. The coercivity vs. grain size results generally follow the trend predicted in the literature. The magnetic behavior of annealed ECAE material compares favorably to conventional bar, possibly due to mild crystallographic texturing which enhances properties in the post-ECAE annealed material. Overall, this study highlights a definitive tradeoff between mechanical and magnetic properties brought about by post-ECAE annealing and grain growth.