Publications

8 Results

Search results

Jump to search filters

Triple Junction Segregation Dominates the Stability of Nanocrystalline Alloys

Nano Letters

Barnett, Annie K.; Hussein, Omar; Alghalayini, Maher; Hinojos, Alejandro; Nathaniel, James E.; Medlin, Douglas L.; Hattar, Khalid; Boyce, Brad B.; Abdeljawad, Fadi

We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.

More Details

Gradient nanostructuring via compositional means

Acta Materialia

Barrios Santos, Alejandro J.; Nathaniel, James E.; Monti, Joseph M.; Milne, Zachary M.; Adams, David P.; Hattar, Khalid M.; Medlin, Douglas L.; Dingreville, Remi P.; Boyce, Brad B.

Nanocrystalline metals are inherently unstable against thermal and mechanical stimuli, commonly resulting in significant grain growth. Also, while these metals exhibit substantial Hall-Petch strengthening, they tend to suffer from low ductility and fracture toughness. With regard to the grain growth problem, alloying elements have been employed to stabilize the microstructure through kinetic and/or thermodynamic mechanisms. And to address the ductility challenge, spatially-graded grain size distributions have been developed to facilitate heterogeneous deformation modes: high-strength at the surface and plastic deformation in the bulk. In the present work, we combine these two strategies and present a new methodology for the fabrication of gradient nanostructured metals via compositional means. We have demonstrated that annealing a compositionally stepwise Pt-Au film with a homogenous microstructure results in a film with a spatial microstructural gradient, exhibiting grains which can be twice as wide in the bulk compared to the outer surfaces. Additionally, phase-field modeling was employed for the comparison with experimental results and for further investigation of the competing mechanisms of Au diffusion and thermally induced grain growth. This fabrication method offers an alternative approach for developing the next generation of microstructurally stable gradient nanostructured films.

More Details

Irradiation-induced grain boundary facet motion: In situ observations and atomic-scale mechanisms

Science Advances

Barr, Christopher M.; Chen, Elton Y.; Nathaniel, James E.; Lu, Ping L.; Adams, David P.; Dingreville, Remi P.; Boyce, Brad B.; Hattar, Khalid M.; Medlin, Douglas L.

Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.

More Details
8 Results
8 Results