Publications

Results 1–25 of 36

Search results

Jump to search filters

Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models

Geoscientific Model Development

Guba, Oksana G.; Taylor, Mark A.; Bosler, Peter A.; Eldred, Christopher; Lauritzen, Peter H.

Motivated by reducing errors in the energy budget related to enthalpy fluxes within the Energy Exascale Earth System Model (E3SM), we study several physics-dynamics coupling approaches. Using idealized physics, a moist rising bubble test case, and the E3SM's nonhydrostatic dynamical core, we consider unapproximated and approximated thermodynamics applied at constant pressure or constant volume. With the standard dynamics and physics time-split implementation, we describe how the constant-pressure and constant-volume approaches use different mechanisms to transform physics tendencies into dynamical motion and show that only the constant-volume approach is consistent with the underlying equations. Using time step convergence studies, we show that the two approaches both converge but to slightly different solutions. We reproduce the large inconsistencies between the energy flux internal to the model and the energy flux of precipitation when using approximate thermodynamics, which can only be removed by considering variable latent heats, both when computing the latent heating from phase change and when applying this heating to update the temperature. Finally, we show that in the nonhydrostatic case, for physics applied at constant pressure, the general relation that enthalpy is locally conserved no longer holds. In this case, the conserved quantity is enthalpy plus an additional term proportional to the difference between hydrostatic pressure and full pressure.

More Details

Generalized moving least squares vs. radial basis function finite difference methods for approximating surface derivatives

Computers and Mathematics with Applications

Jones, Andrew M.; Bosler, Peter A.; Kuberry, Paul A.; Wright, Grady B.

Approximating differential operators defined on two-dimensional surfaces is an important problem that arises in many areas of science and engineering. Over the past ten years, localized meshfree methods based on generalized moving least squares (GMLS) and radial basis function finite differences (RBF-FD) have been shown to be effective for this task as they can give high orders of accuracy at low computational cost, and they can be applied to surfaces defined only by point clouds. However, there have yet to be any studies that perform a direct comparison of these methods for approximating surface differential operators (SDOs). The first purpose of this work is to fill that gap. For this comparison, we focus on an RBF-FD method based on polyharmonic spline kernels and polynomials (PHS+Poly) since they are most closely related to the GMLS method. Additionally, we use a relatively new technique for approximating SDOs with RBF-FD called the tangent plane method since it is simpler than previous techniques and natural to use with PHS+Poly RBF-FD. The second purpose of this work is to relate the tangent plane formulation of SDOs to the local coordinate formulation used in GMLS and to show that they are equivalent when the tangent space to the surface is known exactly. The final purpose is to use ideas from the GMLS SDO formulation to derive a new RBF-FD method for approximating the tangent space for a point cloud surface when it is unknown. For the numerical comparisons of the methods, we examine their convergence rates for approximating the surface gradient, divergence, and Laplacian as the point clouds are refined for various parameter choices. We also compare their efficiency in terms of accuracy per computational cost, both when including and excluding setup costs.

More Details

Islet: interpolation semi-Lagrangian element-based transport

Geoscientific Model Development

Bradley, Andrew M.; Bosler, Peter A.; Guba, Oksana G.

Advection of trace species, or tracers, also called tracer transport, in models of the atmosphere and other physical domains is an important and potentially computationally expensive part of a model's dynamical core. Semi-Lagrangian (SL) advection methods are efficient because they permit a time step much larger than the advective stability limit for explicit Eulerian methods without requiring the solution of a globally coupled system of equations as implicit Eulerian methods do. Thus, to reduce the computational expense of tracer transport, dynamical cores often use SL methods to advect tracers. The class of interpolation semi-Lagrangian (ISL) methods contains potentially extremely efficient SL methods. We describe a finite-element ISL transport method that we call the interpolation semi-Lagrangian element-based transport (Islet) method, such as for use with atmosphere models discretized using the spectral element method. The Islet method uses three grids that share an element grid: a dynamics grid supporting, for example, the Gauss-Legendre-Lobatto basis of degree three; a physics parameterizations grid with a configurable number of finite-volume subcells per element; and a tracer grid supporting use of Islet bases with particular basis again configurable. This method provides extremely accurate tracer transport and excellent diagnostic values in a number of verification problems.

More Details

A framework to evaluate IMEX schemes for atmospheric models

Geoscientific Model Development

Guba, Oksana G.; Taylor, Mark A.; Bradley, Andrew M.; Bosler, Peter A.; Steyer, Andrew S.

We present a new evaluation framework for implicit and explicit (IMEX) Runge-Kutta time-stepping schemes. The new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate the stability of IMEX methods and their dispersion and dissipation of gravity, Rossby, and acoustic waves. We test the new framework on a variety of IMEX schemes and use it to develop and analyze a set of second-order low-storage IMEX Runge-Kutta methods with a high Courant-Friedrichs-Lewy (CFL) number. We show that the new framework is more selective than the 2-D acoustic system previously used in the literature. Schemes that are stable for the 2-D acoustic system are not stable for the system of normal modes.

More Details

A framework to evaluate IMEX schemes for atmospheric models

Geoscientific Model Development (Online)

Guba, Oksana G.; Taylor, Mark A.; Bradley, Andrew M.; Bosler, Peter A.; Steyer, Andrew S.

We present a new evaluation framework for implicit and explicit (IMEX) Runge–Kutta time-stepping schemes. The new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate the stability of IMEX methods and their dispersion and dissipation of gravity, Rossby, and acoustic waves. We test the new framework on a variety of IMEX schemes and use it to develop and analyze a set of second-order low-storage IMEX Runge–Kutta methods with a high Courant–Friedrichs–Lewy (CFL) number. We show that the new framework is more selective than the 2-D acoustic system previously used in the literature. Schemes that are stable for the 2-D acoustic system are not stable for the system of normal modes.

More Details

Compatible Particle Discretizations (Final LDRD Report)

Bochev, Pavel B.; Bosler, Peter A.; Kuberry, Paul A.; Perego, Mauro P.; Peterson, Kara J.; Trask, Nathaniel A.

This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.

More Details

Communication-efficient property preservation in tracer transport

SIAM Journal on Scientific Computing

Bradley, Andrew M.; Bosler, Peter A.; Guba, Oksana G.; Taylor, Mark A.; Barnett, Gregory A.

Atmospheric tracer transport is a computationally demanding component of the atmospheric dynamical core of weather and climate simulations. Simulations typically have tens to hundreds of tracers. A tracer field is required to preserve several properties, including mass, shape, and tracer consistency. To improve computational efficiency, it is common to apply different spatial and temporal discretizations to the tracer transport equations than to the dynamical equations. Using different discretizations increases the difficulty of preserving properties. This paper provides a unified framework to analyze the property preservation problem and classes of algorithms to solve it. We examine the primary problem and a safety problem; describe three classes of algorithms to solve these; introduce new algorithms in two of these classes; make connections among the algorithms; analyze each algorithm in terms of correctness, bound on its solution magnitude, and its communication efficiency; and study numerical results. A new algorithm, QLT, has the smallest communication volume, and in an important case it redistributes mass approximately locally. These algorithms are only very loosely coupled to the underlying discretizations of the dynamical and tracer transport equations and thus are broadly and efficiently applicable. In addition, they may be applied to remap problems in applications other than tracer transport.

More Details

Conservative multimoment transport along characteristics for discontinuous Galerkin methods

SIAM Journal on Scientific Computing

Bosler, Peter A.; Bradley, Andrew M.; Taylor, Mark A.

A set of algorithms based on characteristic discontinuous Galerkin methods is presented for tracer transport on the sphere. The algorithms are designed to reduce message passing interface communication volume per unit of simulated time relative to current methods generally, and to the spectral element scheme employed by the U.S. Department of Energy's Exascale Earth System Model (E3SM) specifically. Two methods are developed to enforce discrete mass conservation when the transport schemes are coupled to a separate dynamics solver; constrained transport and Jacobian-combined transport. A communication-efficient method is introduced to enforce tracer consistency between the transport scheme and dynamics solver; this method also provides the transport scheme's shape preservation capability. A subset of the algorithms derived here is implemented in E3SM and shown to improve transport performance by a factor of 2.2 for the model's standard configuration with 40 tracers at the strong scaling limit of one element per core.

More Details
Results 1–25 of 36
Results 1–25 of 36