Publications

Results 1–25 of 231

Search results

Jump to search filters

Chemical Reaction Networks Explain Gas Evolution Mechanisms in Mg-Ion Batteries

Journal of the American Chemical Society

Spotte-Smith, Evan W.C.; Blau, Samuel M.; Barter, Daniel; Leon, Noel J.; Hahn, Nathan H.; Redkar, Nikita S.; Zavadil, Kevin R.; Liao, Chen; Persson, Kristin A.

Out-of-equilibrium electrochemical reaction mechanisms are notoriously difficult to characterize. However, such reactions are critical for a range of technological applications. For instance, in metal-ion batteries, spontaneous electrolyte degradation controls electrode passivation and battery cycle life. Here, to improve our ability to elucidate electrochemical reactivity, we for the first time combine computational chemical reaction network (CRN) analysis based on density functional theory (DFT) and differential electrochemical mass spectroscopy (DEMS) to study gas evolution from a model Mg-ion battery electrolyte-magnesium bistriflimide (Mg(TFSI)2) dissolved in diglyme (G2). Automated CRN analysis allows for the facile interpretation of DEMS data, revealing H2O, C2H4, and CH3OH as major products of G2 decomposition. These findings are further explained by identifying elementary mechanisms using DFT. While TFSI-is reactive at Mg electrodes, we find that it does not meaningfully contribute to gas evolution. The combined theoretical-experimental approach developed here provides a means to effectively predict electrolyte decomposition products and pathways when initially unknown.

More Details

Magnesium Battery Electrolytes with Improved Oxidative Stability Enabled by Selective Solvation in Fluorinated Solvents

ACS Applied Energy Materials

Hahn, Nathan H.; Kamphaus, Ethan P.; Chen, Ying; Murugesan, Vijayakumar; Mueller, Karl T.; Cheng, Lei; Zavadil, Kevin R.

Practical Mg batteries require electrolytes that are stable both toward reduction by Mg metal and oxidation by high voltage cathodes. State-of-the-art Mg electrolytes based on weakly coordinating Mg salts utilize standard ether-type solvents (usually glymes) due to their reductive stability. However, the oxidative stabilities of these solvents are less than ideal, leading to difficulties in realizing the high oxidative stabilities of recently developed salts. On the other hand, alternative solvents with greater oxidative stability are typically unable to support Mg cycling. In this work, we report a selective solvation approach involving the combination of glyme and hydrofluoroether solvents. Selective solvation of Mg2+ by the glyme solvent component increases the oxidative stability of the glyme while maintaining sufficient reductive stability of the non-coordinating hydrofluoroether. We show that this approach enables the design of electrolytes with greater oxidative stability than glyme-only electrolytes while retaining enough reductive stability to cycle Mg metal. We also relate the influence of various coordination interactions among the solvents and anions with Mg2+ to their electrochemical stabilities to better inform the design of future electrolytes.

More Details

Evaluation of Lithium Metal Anode Volumetric Expansion through Laser Plasma Focused Ion Beam Cross-Sectional Imaging

Journal of the Electrochemical Society

Merrill, Laura C.; Gannon, Renae N.; Jungjohann, Katherine L.; Randolph, Steven J.; Goriparti, Subrahmanyam; Zavadil, Kevin R.; Johnson, David C.; Harrison, Katharine L.

Lithium metal is an ideal anode for high energy density batteries, however the implementation of lithium metal anodes remains challenging. Beyond the development of highly efficient electrolytes, degradation processes restrict cycle life and reduce practical energy density. Herein lithium volumetric expansion and degradation pathways are studied in half cells through coupling electrochemical analysis with cross-sectional imaging of the intact electrode stack using a cryogenic laser plasma focused ion beam and scanning electron microscope. We find that the volumetric capacity is compromised as early as the first cycle, at best reaching values only half the theoretical capacity (1033 vs 2045 mAh cm−3). By the 101st electrodeposition, the practical volumetric capacity decreases to values ranging from 143 to 343 mAh cm−3

More Details

Excitonic Effects in X-ray Absorption Spectra of Fluoride Salts and Their Surfaces

Chemistry of Materials

Sanz-Matias, Ana; Roychoudhury, Subhayan; Feng, Xuefei; Yang, Feipeng; Cheng, Kao L.; Zavadil, Kevin R.; Guo, Jinghua; Prendergast, David

Given their natural abundance and thermodynamic stability, fluoride salts may appear as evolving components of electrochemical interfaces in Li-ion batteries and emergent multivalent ion cells. This is due to the practice of employing electrolytes with fluorine-containing species (salt, solvent, or additives) that electrochemically decompose and deposit on the electrodes. Operando X-ray absorption spectroscopy (XAS) can probe the electrode-electrolyte interface with a single-digit nanometer depth resolution and offers a wealth of insights into the evolution and Coulombic efficiency or degradation of prototype cells, provided that the spectra can be reliably interpreted in terms of local oxidation state, atomic coordination, and electronic structure about the excited atoms. To this end, we explore fluorine K-edge XAS of mono- (Li, Na, and K) and di-valent (Mg, Ca, and Zn) fluoride salts from a theoretical standpoint and discover a surprising level of detailed electronic structure information about these materials despite the relatively predictable oxidation state and ionicity of the fluoride anion and the metal cation. Utilizing a recently developed many-body approach based on the ΔSCF method, we calculate the XAS using density functional theory and experimental spectral profiles are well reproduced despite some experimental discrepancies in energy alignment within the literature, which we can correct for in our simulations. We outline a general methodology to explain shifts in the main XAS peak energies in terms of a simple exciton model and explain line-shape differences resulting from the mixing of core-excited states with metal d character (for K and Ca specifically). Given ultimate applications to evolving interfaces, some understanding of the role of surfaces and their terminations in defining new spectral features is provided to indicate the sensitivity of such measurements to changes in interfacial chemistry.

More Details

Efficacy of Stabilizing Calcium Battery Electrolytes through Salt-Directed Coordination Change

Journal of Physical Chemistry C

Hahn, Nathan H.; McClary, Scott A.; Landers, Alan T.; Zavadil, Kevin R.

Achieving practical, high-energy-density calcium batteries requires controlling the stability of Ca2+electrolytes during calcium metal cycling. Because of the highly reactive nature of calcium, most typical electrolyte constituents are unstable, leading to electrode passivation and low Coulombic efficiency. Among various commercially available salts, calcium bis(trifluoromethylsulfonyl)imide (Ca(TFSI)2) is attractive because of its oxidative stability and high solubility in a variety of solvents. However, this salt does not allow for calcium metal plating, and it has been proposed that TFSI-instability induced by Ca2+coordination is to blame. In this work, we test the ability of strongly coordinating Ca2+cosalts such as halides and borohydrides to displace TFSI-from the first coordination shell of Ca2+and thereby stabilize TFSI-based electrolytes to enable calcium plating. Through spectroscopic analysis, we find that the effectiveness of these cosalts at displacing the TFSI-anion is dependent on the solvent's coordination strength toward Ca2+. Surprisingly, electrochemical calcium deposition behavior is not correlated to the population of bound or free TFSI-. Instead, the nature of the coordination interaction between Ca2+and the cosalt anion is more important for determining stability. Our findings indicate that TFSI-anions are inherently unstable during calcium deposition even in the nominally free state. Therefore, strategies aimed at eliminating the interactions of these anions with the electrode surface via interface/interphase design are required.

More Details

Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry

Joule

Li, Chang; Shyamsunder, Abhinandan; Hoane, Alexis G.; Long, Daniel M.; Kwok, Chun Y.; Kotula, Paul G.; Zavadil, Kevin R.; Gewirth, Andrew A.; Nazar, Linda F.

Aqueous zinc-metal batteries are plagued by poor Zn reversibility owing to zinc dendrite and layered double hydroxide (LDH) formation. Here, we introduce a novel additive—N,N-dimethylformamidium trifluoromethanesulfonate (DOTf)—in a low-cost aqueous electrolyte that can very effectively address these issues. The initial water-assisted dissociation of DOTf into triflic superacid creates a robust nanostructured solid-electrolyte interface (SEI)—revealed by operando spectroscopy and cryomicroscopy—which excludes water and enables dense Zn deposition. We demonstrate excellent Zn plating/stripping in a Zn||Cu asymmetric cell for more than 3,500 cycles. Furthermore, near 100% CE is realized at a combined high current density of 4 mA cm−2 and an areal capacity of 4 mAh cm−2 over long-term cycling. Zn||Zn0.25V2O5·nH2O full cells retain ∼83% of their capacity after 1,000 cycles with mass-limited Zn anodes. By restricting the depth of discharge, the cathodes exhibit less proton intercalation and LDH formation with an extended lifetime of 2,000 cycles.

More Details

Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry

JACS Au

Hu, Jian Z.; Jaegers, Nicholas R.; Hahn, Nathan H.; Hu, Wenda; Han, Kee S.; Chen, Ying; Sears, Jesse A.; Murugesan, Vijayakumar; Zavadil, Kevin R.; Mueller, Karl T.

Efforts to expand the technological capability of batteries have generated increased interest in divalent cationic systems. Electrolytes used for these electrochemical applications often incorporate cyclic ethers as electrolyte solvents; however, the detailed solvation environments within such systems are not well-understood. To foster insights into the solvation structures of such electrolytes, Ca(TFSI)2and Zn(TFSI)2dissolved in tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran were investigated through multi-nuclear magnetic resonance spectroscopy (17O, 43Ca, and 67Zn NMR) combined with quantum chemistry modeling of NMR chemical shifts. NMR provides spectroscopic fingerprints that readily couple with quantum chemistry to identify a set of most probable solvation structures based on the best agreement between the theoretically predicted and experimentally measured values of chemical shifts. The multi-nuclear approach significantly enhances confidence that the correct solvation structures are identified due to the required simultaneous agreement between theory and experiment for multiple nuclear spins. Furthermore, quantum chemistry modeling provides a comparison of the solvation cluster formation energetics, allowing further refinement of the preferred solvation structures. It is shown that a range of solvation structures coexist in most of these electrolytes, with significant molecular motion and dynamic exchange among the structures. This level of solvation diversity correlates with the solubility of the electrolyte, with Zn(TFSI)2/THF exhibiting the lowest degree of each. Comparisons of analogous Ca2+and Zn2+solvation structures reveal a significant cation size effect that is manifested in significantly reduced cation-solvent bond lengths and thus stronger solvent bonding for Zn2+relative to Ca2+. The strength of this bonding is further reduced by methylation of the cyclic ether ring. Solvation shells containing anions are energetically preferred in all the studied electrolytes, leading to significant quantities of contact ion pairs and consequently neutrally charged clusters. It is likely that the transport and interfacial de-solvation/re-solvation properties of these electrolytes are directed by these anion interactions. These insights into the detailed solvation structures, cation size, and solvent effects, including the molecular dynamics, are fundamentally important for the rational design of electrolytes in multivalent battery electrolyte systems.

More Details

Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes

Physical Chemistry Chemical Physics

Hahn, Nathan H.; Self, Julian; Driscoll, Darren M.; Dandu, Naveen; Han, Kee S.; Murugesan, Vijayakumar; Mueller, Karl T.; Curtiss, Larry A.; Balasubramanian, Mahalingam; Persson, Kristin A.; Zavadil, Kevin R.

Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.

More Details

Cryogenic Laser Ablation Reveals Short-Circuit Mechanism in Lithium Metal Batteries

ACS Energy Letters

Jungjohann, Katherine L.; Gannon, Renae N.; Goriparti, Subrahmanyam; Randolph, Steven J.; Merrill, Laura C.; Johnson, David C.; Zavadil, Kevin R.; Harris, Stephen J.; Harrison, Katharine L.

The dramatic 50% improvement in energy density that Li-metal anodes offer in comparison to graphite anodes in conventional lithium (Li)-ion batteries cannot be realized with current cell designs because of cell failure after a few cycles. Often, failure is caused by Li dendrites that grow through the separator, leading to short circuits. Here, we used a new characterization technique, cryogenic femtosecond laser cross sectioning and subsequent scanning electron microscopy, to observe the electroplated Li-metal morphology and the accompanying solid electrolyte interphase (SEI) into and through the intact coin cell battery's separator, gradually opening pathways for soft-short circuits that cause failure. We found that separator penetration by the SEI guided the growth of Li dendrites through the cell. A short-circuit mechanism via SEI growth at high current density within the separator is provided. These results will inform future efforts for separator and electrolyte design for Li-metal anodes.

More Details

Quantifying Species Populations in Multivalent Borohydride Electrolytes

Journal of Physical Chemistry B

Hahn, Nathan H.; Self, Julian; Han, Kee S.; Murugesan, Vijayakumar; Mueller, Karl T.; Persson, Kristin A.; Zavadil, Kevin R.

Multivalent batteries represent an important beyond Li-ion energy storage concept. The prospect of calcium batteries, in particular, has emerged recently due to novel electrolyte demonstrations, especially that of a ground-breaking combination of the borohydride salt Ca(BH4)2 dissolved in tetrahydrofuran. Recent analysis of magnesium and calcium versions of this electrolyte led to the identification of divergent speciation pathways for Mg2+ and Ca2+ despite identical anions and solvents, owing to differences in cation size and attendant flexibility of coordination. To test these proposed speciation equilibria and develop a more quantitative understanding thereof, we have applied pulsed-field-gradient nuclear magnetic resonance and dielectric relaxation spectroscopy to study these electrolytes. Concentration-dependent variation in anion diffusivities and solution dipole relaxations, interpreted with the aid of molecular dynamics simulations, confirms these divergent Mg2+ and Ca2+ speciation pathways. These results provide a more quantitative description of the electroactive species populations. We find that these species are present in relatively small quantities, even in the highly active Ca(BH4)2/tetrahydrofuran electrolyte. This finding helps interpret previous characterizations of metal deposition efficiency and morphology control and thus provides important fundamental insight into the dynamic properties of multivalent electrolytes for next-generation batteries.

More Details

Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents

Journal of Physical Chemistry C

Han, Kee S.; Hahn, Nathan H.; Zavadil, Kevin R.; Jaegers, Nicholas R.; Chen, Ying; Hu, Jian Z.; Murugesan, Vijayakumar; Mueller, Karl T.

Most multivalent secondary batteries have employed electrolytes composed of cyclic ether solvents such as tetrahydrofuran or linear glycol ether solvents (glymes) such as 1,2-dimethoxyethane (G1). A robust understanding of multivalent cation solvation tendencies in these classes of solvents provides insight into corresponding structure-property relationships which, in turn, promotes the design and discovery of improved electrolytes. In this work, our goal is to systematically address how electrolyte constituent properties, namely, ether solvent structure and dication size, direct the solvation interactions of divalent electrolytes and their resultant properties. This study utilizes pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy in conjunction with Raman spectroscopy and ionic conductivity measurements to elucidate the preferential interactions between multivalent cations, anions, and solvent molecules along with their correlated ion dynamics. These investigations incorporate two representative divalent cations (Ca2+ and Zn2+) as well as two ethereal solvent representatives from both the cyclic ether and glyme structural classes. The results reveal that anions coordinate more readily with divalent cations in cyclic ethers than in glymes. Furthermore, the coordination of the anions with Ca2+, i.e., contact-ion pair (CIP) formation is more pronounced than with Zn2+ in a glyme solvent of limited chain length (G1), providing insight into cation size effects that are important for translating solvation behavior across various multivalent electrolytes. Importantly, we find that specific anion coordination is more strongly controlled by solvent structure than by salt concentration in the practical range of 0.1-0.5 M. However, simply reducing these inner-sphere inter-ionic interactions by changing solvent structure does not necessarily de-correlate ionic motion. Instead, concentration-dependent changes in molar ionic conductivity suggest that second-shell interactions, i.e., solvent separated ion pairs (SSIPs), are prevalent in these electrolytes and that the solution dielectric constant, which is increased by the presence of dipolar ion pairs, is critical for controlling these interactions. These findings thus provide a basis for understanding the physical chemistry of multivalent battery electrolytes.

More Details

Rationalizing Calcium Electrodeposition Behavior by Quantifying Ethereal Solvation Effects on Ca2+Coordination in Well-Dissociated Electrolytes

Journal of the Electrochemical Society

Driscoll, Darren M.; Dandu, Naveen K.; Hahn, Nathan H.; Seguin, Trevor J.; Persson, Kristin A.; Zavadil, Kevin R.; Curtiss, Larry A.; Balasubramanian, Mahalingam

Ca-ion electrochemical systems have been pushed to the forefront of recent multivalent energy storage advances due to their use of earth-abundant redox materials and their high theoretical specific densities in relation to monovalent or even other more widely explored multivalent-charge carriers. However, significant pitfalls in metal plating and stripping arise from electrolyte decomposition and can be related to the coordination environment around Ca2+ with both the negatively charged anion and the organic-aprotic solvent. In this study, we apply multiple spectroscopic techniques in conjunction with density functional theory to evaluate the coordination environment of Ca2+ across a class of ethereal solvents. Through the combination of X-ray absorption fine structure and time-dependent density functional theory, descriptive measures of the local geometry, coordination, and electronic structure of Ca-ethereal complexes provide distinct structural trends depending on the extent of the Ca2+-solvent interaction. Finally, we correlate these findings with electrochemical measurements of calcium tetrakis(hexafluoroisopropoxy)borate (CaBHFIP2) salts dissolved within this class of solvents to provide insight into the preferred structural configuration of Ca2+ electrolytic solutions for optimized electrochemical plating and stripping.

More Details
Results 1–25 of 231
Results 1–25 of 231