In superconducting systems in which inversion and time-reversal symmetry are simultaneously broken the critical current for positive and negative current bias can be different. For superconducting systems formed by Josephson junctions (JJs) this effect is termed Josephson diode effect. In this paper, we study the Josephson diode effect for a superconducting quantum interference device (SQUID) formed by a topological JJ with a 4π-periodic current-phase relationship and a topologically trivial JJ. We show how the fractional Josephson effect manifests in the Josephson diode effect with the application of a magnetic field and how tuning properties of the trivial SQUID arm can lead to diode polarity switching. We then investigate the ac response and show that the polarity of the diode effect can be tuned by varying the ac power and discuss differences between the ac diode effect of asymmetric SQUIDs with no topological JJ and SQUIDs in which one JJ is topological.
Qu, Dong X.; Cuozzo, Joseph J.; Teslich, Nick E.; Ray, Keith G.; Dai, Zurong; Li, Tian T.; Chapline, George F.; Dubois, Jonathan L.; Rossi, Enrico
Superconducting topological systems formed by a strong 3D topological insulator (TI) in proximity to a conventional s-wave superconductor (SC) have been intensely studied, as they may host Majorana zero modes. However, there are limited experimental realizations of TI-SC systems in which robust superconducting pairing is induced on the surface states of the TI and a topological superconducting state is established. Here, we fabricate a TI-SC system by depositing, via a focused ion beam, tungsten (W) nanoscale clusters on the surface of TI Bi0.91Sb0.09. We find that the resulting heterostructure supports phase-slip lines (PSLs) that act as effective Josephson junctions (JJs). We probe the response of the system to microwave radiation. We find that for some ac frequencies, and powers, the resulting Shapiro steps’ structure of the voltage-current characteristic exhibits a missing first step and an unexpectedly wide second Shapiro step. The theoretical analysis of the measurements shows that the unusual Shapiro response arises from the interplay between a static JJ and a dynamic one and allows us to identify the conditions under which the missing first step can be attributed to the topological nature of the JJs formed by the PSLs. Our results suggest an approach to induce superconductivity in a TI, a route to realizing highly transparent topological JJs, and show how the response of superconducting systems to microwave radiation can be used to infer the dynamics of PSLs. Highly transparent topological junctions are promising candidates to realize vector field sensors with very high sensitivity. In addition, due to the nontrivial Berry phase of the TI’s surface states such junctions can be in a topological state which is ideal to create topologically protected qubits.
We investigate the interplay between the quantum Hall (QH) effect and superconductivity in InAs surface quantum well (SQW)/NbTiN heterostructures using a quantum point contact (QPC). We use QPC to control the proximity of the edge states to the superconductor. By measuring the upstream and downstream resistances of the device, we investigate the efficiency of Andreev conversion at the InAs/NbTiN interface. Our experimental data is analyzed using the Landauer-Büttiker formalism, generalized to allow for Andreev reflection processes. We show that by varying the voltage of the QPC, VQPC, the average Andreev reflection, A, at the QH-SC interface can be tuned from 50% to ∼10%. The evolution of A with VQPC extracted from the measurements exhibits plateaus separated by regions for which A varies continuously with VQPC. The presence of plateaus suggests that for some ranges of VQPC the QPC might be pinching off almost completely from the QH-SC interface some of the edge modes. Our work shows an experimental setup to control and advance the understanding of the complex interplay between superconductivity and QH effect in two-dimensional gas systems.
Hatefipour, Mehdi; Pour; Cuozzo, Joseph J.; Kanter, Jesse; Strickland, William M.; Allemang, Christopher R.; Lu, Tzu-Ming L.; Rossi, Enrico; Shabani, Javad
Indium arsenide (InAs) near surface quantum wells (QWs) are promising for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the ones in the superconductor. In this work, we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance, consistent with a very high Andreev conversion. We analyze the experimental data using the Landauer-Büttiker formalism, generalized to allow for Andreev reflection processes. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.