Publications

21 Results

Search results

Jump to search filters

IMoFi (Intelligent Model Fidelity): Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Updated Accomplishments

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim; Holman, Derek; Mannon, Tim; Pinney, David

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO), including some updates from the previous report SAND2022-0215, to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration (Final Report)

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Gomez-Peces, Cristian; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

Replacing Transmission Infrastructure with Solar and Energy Storage Systems: An Islanded Microgrid Case Study

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Furlani Bastos, Alvaro F.; Nguyen, Tu A.; Byrne, Raymond H.; Weed, Russ

Substantial decreases in the cost of solar and energy storage systems create suitable conditions for implementing microgrids that operate independently from the main transmission/distribution grids. Such microgrids concept is particularly of interest for islanded and remote communities, which oftentimes rely on expensive energy resources to supply their demand. This paper presents the design of a microgrid for an island community, in which transmission infrastructure (an aging subsea cable that connects to the mainland grid) is replaced by solar and energy storage systems. Based on historical demand data and solar generation forecasts, an optimization framework is proposed to determine sizes of the microgrid components such that the local generation resources are self-sufficient and reliable. Results of this analysis show that, indeed, solar and energy storage systems are viable choices for implementing a microgrid and replacing transmission infrastructure.

More Details

Global Energy Storage Database: Enhancing Features and Validation Procedure

2022 IEEE Electrical Energy Storage Application and Technologies Conference, EESAT 2022

Tamrakar, Ujjwol; Furlani Bastos, Alvaro F.; Roberts-Baca, Samuel; Bhalla, Sahil; McNamara, Joseph W.; Nguyen, Tu A.

Large-scale deployment of energy storage systems is a pivotal step toward achieving the clean energy goals of the future. An accurate and publicly accessible database on energy storage projects can help accelerate deployment by providing valuable information and characteristic data to different stakeholders. The U.S. Department of Energy's Global Energy Storage Database (GESDB) aims at providing high-quality and accurate data on energy storage projects around the globe. This paper first provides an overview of the GESDB, briefly describing its features and overall usage. This is followed by a detailed description of the procedure used to validate the database. In doing so, the paper aims at improving the usability of the website while enhancing its value to the community. Furthermore, the presented validation procedure makes the underlying assumptions transparent to the public so that data misinterpretation can be minimized/avoided.

More Details

Leveraging Additional Sensors for Phase Identification in Systems with Voltage Regulators

2021 IEEE Power and Energy Conference at Illinois, PECI 2021

Blakely, Logan; Reno, Matthew J.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Nordy, David

The use of grid-edge sensing in distribution model calibration is a significant aid in reducing the time and cost associated with finding and correcting errors in the models. This work proposes a novel method for the phase identification task employing correlation coefficients on residential advanced metering infrastructure (AMI) combined with additional sensors on the medium-voltage distribution system to enable utilities to effectively calibrate the phase classification in distribution system models algorithmically. The proposed method was tested on a real utility feeder of ∼800 customers that includes 15-min voltage measurements on each phase from IntelliRupters® and 15-min AMI voltage measurements from all customers. The proposed method is compared with a standard phase identification method using voltage correlations with the substation and shows significantly improved results. The final phase predictions were verified to be correct in the field by the utility company.

More Details
21 Results
21 Results