Custom-form factor batteries fabricated in non-conventional shapes can maximize the overall energy density of the systems they power, particularly when used in conjunction with energy dense materials (e.g., Li metal anodes and conversion cathodes). Additive manufacturing (AM), and specifically material extrusion (ME), have been shown as effective methods for producing custom-form cell components, particularly electrodes. However, the AM of several promising energy dense materials (conversion electrodes such as iron trifluoride) have yet to be demonstrated or optimized. Furthermore, the integration of multiple AM produced cell components, such as electrodes and separators, along with a custom package remains largely unexplored. In this work, iron trifluoride (FeF3) and ionogel (IG) separators are conformally printed using ME onto non-planar surfaces to enable the fabrication of custom-form Li-FeF3 batteries. To demonstrate printing on non-planar surfaces, cathodes and separators were deposited onto cylindrical rods using a 5-axis ME printer. ME printed FeF3 was shown to have performance commensurate with FeF3 cast using conventional means, both in coin cell and cylindrical rod formats, with capacities exceeding 700 mAh/g on the first cycle and ranging between 600 and 400 mAh/g over the next 50 cycles. Additionally, a ME process for printing polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) based IGs directly onto FeF3 is developed and enabled using an electrolyte exchange process. In coin cells, this process is shown to produce cells with similar capacity to cells built with Celgard separators out to 50 cycles, with the exception that cycling instabilities are observed during cycles 8–20. When using printed and exchanged IGs in a custom cylindrical cell package, 6 stable high-capacity cycles are achieved. Overall, this work demonstrates approaches for producing high-energy-density Li-FeF3 cells in coin and cylindrical rod formats, which are translatable to customized, arbitrary geometries compatible with ME printing and electrolyte exchange.
Manganese dioxide is a promising cathode material for energy storage applications because of its high redox potential, large theoretical energy density, abundance, and low cost. It has been shown that the performance of MnO2 electrodes in rechargeable alkaline Zn/MnO2 batteries could be improved by nanostructuring and by increasing the concentration of defects in MnO2. However, the underlying mechanism of this improvement is not completely clear. We used an ab initio density functional computational approach to investigate the influence of nanostructuring and crystal defects on the electrochemical properties of the MnO2 cathode material. The mechanism of electrochemical discharge of MnO2 in Zn/MnO2 batteries was studied by modeling the process of H ion insertion into the structures of pyrolusite, ramsdellite, and nsutite polymorphs containing oxygen vacancies, cation vacancies, and open surfaces. Our calculations showed that the binding energies of H ions inserted into the structures of MnO2 polymorphs were strongly affected by the presence of surfaces and bulk defects. In particular, we found that the energies of H ions inserted under the surfaces and attached to the surfaces of MnO2 crystals were significantly lower than those for bulk MnO2. Furthermore, the results of our study provide an explanation for the influence of crystal defects and nanostructuring on the electrochemical reactivity of MnO2 cathodes in rechargeable alkaline Zn/MnO2 batteries.
Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation Mn3O4 or ZnMn2O4 resulting from the uncontrollable reaction of Mn3+ dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO2 electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of “half cells” with advanced-formulation MnO2 cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO2. Other cycling tests with “full cells” of Zn anodes with the same MnO2 cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport.
Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm–2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (~2 mS cm–1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. Importantly, the stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.
Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 – a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle–Fuller–Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. We provide the code as an open-source Python Battery Mathematical Modeling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials.
Grid scale batteries need to be inexpensive to manufacture, safe to operate, and non-toxic in composition. Zinc aqueous (alkaline) batteries hold much promise, but good cycle life and utilization of the zinc has proven difficult partly because zinc is susceptible to H2 gas evolution in KOH. Water-insalt electrolyte (WiSE) can address this shortcoming by lowering the activity of free water molecules in solution, thus reducing H2 gas evolution. In this work, we show the relevant fundamental physicochemical properties of an acetate-based WiSE to establish the practicality and performance of this class of WiSE for battery application. Research and understanding of acetate WiSE is in a nascent state, presently.
The present study has used a variety of characterization techniques to determine the products and reaction pathways involved in the rechargeable Li-FeS2 system. We revisit both the initial lithiation and subsequent cycling of FeS2 employing an ionic liquid electrolyte to investigate the intermediate and final charge products formed under varying thermal conditions (room temperature to 100 °C). The detection of Li2S and hexagonal FeS as the intermediate phases in the initial lithiation and the electrochemical formation of greigite, Fe3S4, as a charge product in the rechargeable reaction differ significantly from previous reports. The conditions for Fe3S4 formation are shown to be dependent on both the temperature (∼60 °C) and the availability of sulfur to drive a FeS to Fe3S4 transformation. Upon further cycling, Fe3S4 transforms to a lower sulfur content iron sulfide phase, a process which coincides with the loss of sulfur based on the new reaction pathways established in this work. The connection between sulfur loss, capacity fade, and charge product composition highlights the critical need to retain sulfur in the active material upon cycling.
Conversion cathodes represent a viable route to improve rechargeable Li+battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. We further determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.
Hawkins, Brendan E.; Turney, Damon E.; Messinger, Robert J.; Kiss, Andrew M.; Yadav, Gautam G.; Banerjee, Sanjoy; Lambert, Timothy N.
Zinc oxide is of great interest for advanced energy devices because of its low cost, wide direct bandgap, non-toxicity, and facile electrochemistry. In zinc alkaline batteries, ZnO plays a critical role in electrode passivation, a process that hinders commercialization and remains poorly understood. Here, novel observations of an electroactive type of ZnO formed in Zn-metal alkaline electrodes are disclosed. The electrical conductivity of battery-formed ZnO is measured and found to vary by factors of up to 104, which provides a first-principles-based understanding of Zn passivation in industrial alkaline batteries. Simultaneous with this conductivity change, protons are inserted into the crystal structure and electrons are inserted into the conduction band in quantities up to ≈1020 cm−3 and ≈1 mAh gZnO−1. Electron insertion causes blue electrochromic coloration with efficiencies and rates competitive with leading electrochromic materials. The electroactivity of ZnO is evidently enabled by rapid crystal growth, which forms defects that complex with inserted cations, charge-balanced by the increase of conduction band electrons. This property distinguishes electroactive ZnO from inactive classical ZnO. Knowledge of this phenomenon is applied to improve cycling performance of industrial-design electrodes at 50% zinc utilization and the authors propose other uses for ZnO such as electrochromic devices.