Publications

Results 1–25 of 81

Search results

Jump to search filters

Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Zogbi, Nicholas; Liu, Samuel; Bennett, Christopher H.; Agarwal, Sapan A.; Marinella, Matthew J.; Incorvia, Jean A.C.; Xiao, Tianyao X.

The domain wall-magnetic tunnel junction (DW-MTJ) is a versatile device that can simultaneously store data and perform computations. These three-terminal devices are promising for digital logic due to their nonvolatility, low-energy operation, and radiation hardness. Here, we augment the DW-MTJ logic gate with voltage-controlled magnetic anisotropy (VCMA) to improve the reliability of logical concatenation in the presence of realistic process variations. VCMA creates potential wells that allow for reliable and repeatable localization of domain walls (DWs). The DW-MTJ logic gate supports different fanouts, allowing for multiple inputs and outputs for a single device without affecting the area. We simulate a systolic array of DW-MTJ multiply-accumulate (MAC) units with 4-bit and 8-bit precision, which uses the nonvolatility of DW-MTJ logic gates to enable fine-grained pipelining and high parallelism. The DW-MTJ systolic array provides comparable throughput and efficiency to state-of-the-art CMOS systolic arrays while being radiation-hard. These results improve the feasibility of using DW-based processors, especially for extreme-environment applications such as space.

More Details

Proton Tunable Analog Transistor for Low Power Computing

Robinson, Donald A.; Foster, Michael R.; Bennett, Christopher H.; Bhandarkar, Austin B.; Fuller, Elliot J.; Stavila, Vitalie S.; Spataru, Dan C.; Krishnakumar, Raga K.; Cole-Filipiak, Neil C.; Schrader, Paul E.; Ramasesha, Krupa R.; Allendorf, Mark D.; Talin, A.A.

This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .

More Details

Probabilistic Nanomagnetic Memories for Uncertain and Robust Machine Learning

Bennett, Christopher H.; Xiao, Tianyao X.; Liu, Samuel; Humphrey, Leonard; Incorvia, Jean A.; Debusschere, Bert D.; Ries, Daniel R.; Agarwal, Sapan A.

This project evaluated the use of emerging spintronic memory devices for robust and efficient variational inference schemes. Variational inference (VI) schemes, which constrain the distribution for each weight to be a Gaussian distribution with a mean and standard deviation, are a tractable method for calculating posterior distributions of weights in a Bayesian neural network such that this neural network can also be trained using the powerful backpropagation algorithm. Our project focuses on domain-wall magnetic tunnel junctions (DW-MTJs), a powerful multi-functional spintronic synapse design that can achieve low power switching while also opening the pathway towards repeatable, analog operation using fabricated notches. Our initial efforts to employ DW-MTJs as an all-in-one stochastic synapse with both a mean and standard deviation didn’t end up meeting the quality metrics for hardware-friendly VI. In the future, new device stacks and methods for expressive anisotropy modification may make this idea still possible. However, as a fall back that immediately satisfies our requirements, we invented and detailed how the combination of a DW-MTJ synapse encoding the mean and a probabilistic Bayes-MTJ device, programmed via a ferroelectric or ionically modifiable layer, can robustly and expressively implement VI. This design includes a physics-informed small circuit model, that was scaled up to perform and demonstrate rigorous uncertainty quantification applications, up to and including small convolutional networks on a grayscale image classification task, and larger (Residual) networks implementing multi-channel image classification. Lastly, as these results and ideas all depend upon the idea of an inference application where weights (spintronic memory states) remain non-volatile, the retention of these synapses for the notched case was further interrogated. These investigations revealed and emphasized the importance of both notch geometry and anisotropy modification in order to further enhance the endurance of written spintronic states. In the near future, these results will be mapped to effective predictions for room temperature and elevated operation DW-MTJ memory retention, and experimentally verified when devices become available.

More Details

CrossSim Inference Manual v2.0

Xiao, Tianyao X.; Bennett, Christopher H.; Feinberg, Benjamin F.; Marinella, Matthew J.; Agarwal, Sapan A.

Neural networks are largely based on matrix computations. During forward inference, the most heavily used compute kernel is the matrix-vector multiplication (MVM): $W \vec{x} $. Inference is a first frontier for the deployment of next-generation hardware for neural network applications, as it is more readily deployed in edge devices, such as mobile devices or embedded processors with size, weight, and power constraints. Inference is also easier to implement in analog systems than training, which has more stringent device requirements. The main processing kernel used during inference is the MVM.

More Details

An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory

IEEE Transactions on Circuits and Systems I: Regular Papers

Xiao, Tianyao X.; Feinberg, Benjamin F.; Bennett, Christopher H.; Agrawal, Vineet; Saxena, Prashant; Prabhakar, Venkatraman; Ramkumar, Krishnaswamy; Medu, Harsha; Raghavan, Vijay; Chettuvetty, Ramesh; Agarwal, Sapan A.; Marinella, Matthew J.

We demonstrate SONOS (silicon-oxide-nitride-oxide-silicon) analog memory arrays that are optimized for neural network inference. The devices are fabricated in a 40nm process and operated in the subthreshold regime for in-memory matrix multiplication. Subthreshold operation enables low conductances to be implemented with low error, which matches the typical weight distribution of neural networks, which is heavily skewed toward near-zero values. This leads to high accuracy in the presence of programming errors and process variations. We simulate the end-To-end neural network inference accuracy, accounting for the measured programming error, read noise, and retention loss in a fabricated SONOS array. Evaluated on the ImageNet dataset using ResNet50, the accuracy using a SONOS system is within 2.16% of floating-point accuracy without any retraining. The unique error properties and high On/Off ratio of the SONOS device allow scaling to large arrays without bit slicing, and enable an inference architecture that achieves 20 TOPS/W on ResNet50, a > 10× gain in energy efficiency over state-of-The-Art digital and analog inference accelerators.

More Details

Single-Event Effects Induced by Heavy Ions in SONOS Charge Trapping Memory Arrays

IEEE Transactions on Nuclear Science

Xiao, Tianyao X.; Bennett, Christopher H.; Agarwal, Sapan A.; Hughart, David R.; Barnaby, Hugh J.; Puchner, Helmut; Talin, A.A.; Marinella, Matthew J.

We investigate the sensitivity of silicon-oxide-nitride-silicon-oxide (SONOS) charge trapping memory technology to heavy-ion induced single-event effects. Threshold voltage ( V_T ) statistics were collected across multiple test chips that contained in total 18 Mb of 40-nm SONOS memory arrays. The arrays were irradiated with Kr and Ar ion beams, and the changes in their V_T distributions were analyzed as a function of linear energy transfer (LET), beam fluence, and operating temperature. We observe that heavy ion irradiation induces a tail of disturbed devices in the 'program' state distribution, which has also been seen in the response of floating-gate (FG) flash cells. However, the V_T distribution of SONOS cells lacks a distinct secondary peak, which is generally attributed to direct ion strikes to the gate-stack of FG cells. This property, combined with the observed change in the V_T distribution with LET, suggests that SONOS cells are not particularly sensitive to direct ion strikes but cells in the proximity of an ion's absorption can still experience a V_T shift. These results shed new light on the physical mechanisms underlying the V_T shift induced by a single heavy ion in scaled charge trap memory.

More Details

Vector-Matrix Multiplication Engine for Neuromorphic Computation with a CBRAM Crossbar Array [Slides]

Tolleson, Blayne; Marinella, Matthew; Bennett, Christopher H.; Barnaby, Hugh; Wilson, Donald; Short, Jesse C.

The core function of many neural network algorithms is the dot product, or vector matrix multiply (VMM) operation. Crossbar arrays utilizing resistive memory elements can reduce computational energy in neural algorithms by up to five orders of magnitude compared to conventional CPUs. Moving data between a processor, SRAM, and DRAM dominates energy consumption. By utilizing analog operations to reduce data movement, resistive memory crossbars can enable processing of large amounts of data at lower energy than conventional memory architectures.

More Details

Analog Neural Network Inference Accuracy in One-Selector One-Resistor Memory Arrays

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Xiao, Tianyao X.; Bennett, Christopher H.; Wilson, Donald; Feinberg, Benjamin F.; Agarwal, Sapan A.; Marinella, Matthew J.

Non-volatile memory arrays require select devices to ensure accurate programming. The one-selector one-resistor (1S1R) array where a two-terminal nonlinear select device is placed in series with a resistive memory element is attractive due to its high-density data storage; however, the effect of the nonlinear select device on the accuracy of analog in-memory computing has not been explored. This work evaluates the impact of select and memory device properties on the results of analog matrix-vector multiplications. We integrate nonlinear circuit simulations into CrossSim and perform end-to-end neural network inference simulations to study how the select device affects the accuracy of neural network inference. We propose an adjustment to the input voltage that can effectively compensate for the electrical load of the select device. Our results show that for deep residual networks trained on CIFAR-10, a compensation that is uniform across all devices in the system can mitigate these effects over a wide range of values for the select device I-V steepness and memory device On/Off ratio. A realistic I-V curve steepness of 60 mV/dec can yield an accuracy on CIFAR-10 that is within 0.44% of the floating-point accuracy.

More Details

Achieving Accurate In-Memory Neural Network Inference with Highly Overlapping Nonvolatile Memory State Distributions

6th IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2022

Marinella, Matthew J.; Xiao, Tianyao X.; Feinberg, Benjamin F.; Bennett, Christopher H.; Agrawal, Vineet; Puchner, Helmut; Agarwal, Sapan A.

Analog in-memory computing is a method to improve the efficiency of deep neural network inference by orders of magnitude, by utilizing analog properties of a nonvolatile memory. This places new requirements on the memory device, which physically represent neural net weights as analog states. By carefully considering the algorithm implications when mapping weights to physical states, it is possible to achieve precision very close to that of a digital accelerator using a 40nm embedded SONOS.

More Details

Purely Spintronic Leaky Integrate-and-Fire Neurons

Proceedings - IEEE International Symposium on Circuits and Systems

Brigner, Wesley H.; Hassan, Naimul; Hu, Xuan; Bennett, Christopher H.; Garcia-Sanchez, Felipe; Marinella, Matthew J.; Incorvia, Jean A.C.; Friedman, Joseph S.

Neuromorphic computing promises revolutionary improvements over conventional systems for applications that process unstructured information. To fully realize this potential, neuromorphic systems should exploit the biomimetic behavior of emerging nanodevices. In particular, exceptional opportunities are provided by the non-volatility and analog capabilities of spintronic devices. While spintronic devices that emulate neurons have been previously proposed, they require complementary metal-oxide semiconductor (CMOS) technology to function. In turn, this significantly increases the power consumption, fabrication complexity, and device area of a single neuron. This work reviews three previously proposed CMOS-free spintronic neurons designed to resolve this issue.

More Details

Analysis and mitigation of parasitic resistance effects for analog in-memory neural network acceleration

Semiconductor Science and Technology

Xiao, Tianyao X.; Feinberg, Benjamin F.; Rohan, Jacob N.; Bennett, Christopher H.; Agarwal, Sapan A.; Marinella, Matthew J.

To support the increasing demands for efficient deep neural network processing, accelerators based on analog in-memory computation of matrix multiplication have recently gained significant attention for reducing the energy of neural network inference. However, analog processing within memory arrays must contend with the issue of parasitic voltage drops across the metal interconnects, which distort the results of the computation and limit the array size. This work analyzes how parasitic resistance affects the end-to-end inference accuracy of state-of-the-art convolutional neural networks, and comprehensively studies how various design decisions at the device, circuit, architecture, and algorithm levels affect the system's sensitivity to parasitic resistance effects. A set of guidelines are provided for how to design analog accelerator hardware that is intrinsically robust to parasitic resistance, without any explicit compensation or re-training of the network parameters.

More Details

A domain wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks

Applied Physics Letters

Liu, Samuel; Xiao, Tianyao X.; Cui, Can; Incorvia, Jean A.C.; Bennett, Christopher H.; Marinella, Matthew J.

Inspired by the parallelism and efficiency of the brain, several candidates for artificial synapse devices have been developed for neuromorphic computing, yet a nonlinear and asymmetric synaptic response curve precludes their use for backpropagation, the foundation of modern supervised learning. Spintronic devices - which benefit from high endurance, low power consumption, low latency, and CMOS compatibility - are a promising technology for memory, and domain-wall magnetic tunnel junction (DW-MTJ) devices have been shown to implement synaptic functions such as long-term potentiation and spike-timing dependent plasticity. In this work, we propose a notched DW-MTJ synapse as a candidate for supervised learning. Using micromagnetic simulations at room temperature, we show that notched synapses ensure the non-volatility of the synaptic weight and allow for highly linear, symmetric, and reproducible weight updates using either spin transfer torque (STT) or spin-orbit torque (SOT) mechanisms of DW propagation. We use lookup tables constructed from micromagnetics simulations to model the training of neural networks built with DW-MTJ synapses on both the MNIST and Fashion-MNIST image classification tasks. Accounting for thermal noise and realistic process variations, the DW-MTJ devices achieve classification accuracy close to ideal floating-point updates using both STT and SOT devices at room temperature and at 400 K. Our work establishes the basis for a magnetic artificial synapse that can eventually lead to hardware neural networks with fully spintronic matrix operations implementing machine learning.

More Details
Results 1–25 of 81
Results 1–25 of 81