Publications

4 Results

Search results

Jump to search filters

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica R.; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah M.; Brow, Richard; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, Scott J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details

Exploration of Two-Dimensional Materials for Remote Sensing Applications

Banz, James A.; Ruiz, Isaac R.; Howell, Stephen W.; Gao, Shiyuan; Thomas, Michael L.; Duree, Jessica M.

Two-dimensional materials were explored through collaboration with Steve Howell and Catalyn Spataru, led by James Bartz during FY15 and FY16 at Sandia National Laboratories. Because of their two-dimensional nature, these materials may offer properties exceeding those of bulk materials. This work involved Density Functional Theory simulations and optical methods, instrumentation development, materials growth and materials characterization. Through simulation the wide variety of two dimensional materials was down-selected for fabrication and testing. Out of the two dimensional semiconductors studied, black phosphorus bilayers showed the strongest spectral absorption tuning with applied electric field. Laser scanning confocal microscopy, spectroscopy and atomic force microscopy allowed for identification of micron scale samples. A technique involving conductive tip atomic force microscopy and back-side illumination was developed simple assembly and characterization of material spectral response.

More Details
4 Results
4 Results