We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.
High-throughput image segmentation of atomic resolution electron microscopy data poses an ongoing challenge for materials characterization. In this paper, we investigate the application of the polyhedral template matching (PTM) method, a technique widely employed for visualizing three-dimensional (3D) atomistic simulations, to the analysis of two-dimensional (2D) atomic resolution electron microscopy images. This technique is complementary with other atomic resolution data reduction techniques, such as the centrosymmetry parameter, that use the measured atomic peak positions as the starting input. Furthermore, since the template matching process also gives a measure of the local rotation, the method can be used to segment images based on local orientation. We begin by presenting a 2D implementation of the PTM method, suitable for atomic resolution images. We then demonstrate the technique's application to atomic resolution scanning transmission electron microscopy images from close-packed metals, providing examples of the analysis of twins and other grain boundaries in FCC gold and martensite phases in 304 L austenitic stainless steel. Finally, we discuss factors, such as positional errors in the image peak locations, that can affect the accuracy and sensitivity of the structural determinations.
Recent experimentally validated alloy design theories have demonstrated nanocrystalline binary alloys that are stable against thermally induced grain growth. An open question is whether such thermal stability also translates to stability under irradiation. In this study, we investigate the response to heavy ion irradiation of a nanocrystalline platinum gold alloy that is known to be thermally stable from previous studies. Heavy ion irradiation was conducted at both room temperature and elevated temperatures on films of nanocrystalline platinum and platinum gold. Using scanning/transmission electron microscopy equipped with energy-dispersive spectroscopy and automated crystallographic orientation mapping, we observe substantial grain growth in the irradiated area compared to the controlled area beyond the range of heavy ions, as well as compositional redistribution under these conditions, and discuss mechanisms underpinning this instability. These findings highlight that grain boundary stability against one external stimulus, such as heat, does not always translate into grain boundary stability under other stimuli, such as displacement damage.
Junctions are discontinuities in flat grain boundaries that arise in all polycrystalline materials and are thought to play important roles in the response of a grain boundary network to thermal and mechanical loads. A key open question concerns the mechanisms by which solute segregation to junctions impacts properties of the grain boundary. Here, in this work, we investigate the influence of grain boundary facet junctions on solute embrittlement, and we present an analytical model that uses the hydrostatic stress field contributed by dislocations at multiple junctions to describe these effects. Specifically, we study junctions between {112} facets of various lengths in Au $\langle111\rangle$ Σ3 tilt grain boundaries. Copper and silver solutes are employed to determine if the effect of junctions on solute segregation and embrittlement is dependent on size relative to the host. Combined, atomistic simulation data and the analytical model show that Cu and Ag have opposite segregation responses to junctions due to the sign of the hydrostatic stress field induced by junctions. However, a positive shift in the embrittling potency is computed near junctions regardless of solute type or the stress state of the segregation site. Hence, for the conditions studied, junctions consistently shift the energetic landscape towards embrittlement.
Nanocrystalline metals are inherently unstable against thermal and mechanical stimuli, commonly resulting in significant grain growth. Also, while these metals exhibit substantial Hall-Petch strengthening, they tend to suffer from low ductility and fracture toughness. With regard to the grain growth problem, alloying elements have been employed to stabilize the microstructure through kinetic and/or thermodynamic mechanisms. And to address the ductility challenge, spatially-graded grain size distributions have been developed to facilitate heterogeneous deformation modes: high-strength at the surface and plastic deformation in the bulk. In the present work, we combine these two strategies and present a new methodology for the fabrication of gradient nanostructured metals via compositional means. We have demonstrated that annealing a compositionally stepwise Pt-Au film with a homogenous microstructure results in a film with a spatial microstructural gradient, exhibiting grains which can be twice as wide in the bulk compared to the outer surfaces. Additionally, phase-field modeling was employed for the comparison with experimental results and for further investigation of the competing mechanisms of Au diffusion and thermally induced grain growth. This fabrication method offers an alternative approach for developing the next generation of microstructurally stable gradient nanostructured films.
Twinning is a frequent deformation mechanism in nanocrystalline metals, and segregation of solute atoms at twin boundaries is a thermodynamic process that plays an important role in the stability and strengthening of these materials. In pristine, defect-free twin boundaries, solute segregation generally follows a single- or multilayer patterned coverage of solutes that is uniformly and symmetrically distributed at segregation sites across the boundary. However, when a disconnection, a type of interfacial line defect, is present at the twin boundary, we report a possible discontinuity of the segregation patterns across this defect for a broad range of binary alloys. The change of segregation pattern is explained by a break of the local symmetry across the disconnection terraces. The characteristics of this change are dictated by the orientation of the dislocation content sitting at the step region of the disconnection and its synergistic/antagonistic interactions with the step character. These findings not only advance our understanding of the origin of the interface segregation phenomena and the key contribution from interfacial defects, but they also shed light on applications for tailoring atomically precise interfacial structures to design alloys with emerging properties.
The characterization of the three-dimensional arrangement of dislocations is important for many analyses in materials science. Dislocation tomography in transmission electron microscopy is conventionally accomplished through intensity-based reconstruction algorithms. Although such methods work successfully, a disadvantage is that they require many images to be collected over a large tilt range. Here, we present an alternative, semi-automated object-based approach that reduces the data collection requirements by drawing on the prior knowledge that dislocations are line objects. Our approach consists of three steps: (1) initial extraction of dislocation line objects from the individual frames, (2) alignment and matching of these objects across the frames in the tilt series, and (3) tomographic reconstruction to determine the full three-dimensional configuration of the dislocations. Drawing on innovations in graph theory, we employ a node-line segment representation for the dislocation lines and a novel arc-length mapping scheme to relate the dislocations to each other across the images in the tilt series. We demonstrate the method for a dataset collected from a dislocation network imaged by diffraction-contrast scanning transmission electron microscopy. Based on these results and a detailed uncertainty analysis for the algorithm, we discuss opportunities for optimizing data collection and further automating the method.
Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.