Publications

5 Results
Skip to search filters

Energy dispersive x-ray diffraction of luminescent powders: A complement to visible phosphor thermometry

Journal of Applied Physics

Hansen, Linda E.; Winters, Caroline W.; Westphal, Eric R.; Kastengren, Alan K.

Energy-dispersive x-ray diffraction of thermographic phosphors has been explored as a complementary temperature diagnostic to visible phosphor thermometry in environments where the temperature-dependent optical luminescence of the phosphors is occluded. Powder phosphor samples were heated from ambient to 300°C in incremental steps and probed with polychromatic synchrotron x rays; scattered photons were collected at a fixed diffraction angle of 3.9°. Crystal structure, lattice parameters, and coefficients of thermal expansion were calculated from the diffraction data. Finally, of the several phosphors surveyed, YAG:Dy, ZnO:Ga, and GOS:Tb were found to be excellent candidates for diffraction thermometry due to their strong, distinct diffraction peaks that shift in a repeatable and linear manner with temperature.

More Details

Temperature-dependent x-ray fluorescent response from thermographic phosphors under x-ray excitation

Applied Physics Letters

Westphal, Eric R.; Brown, Alex D.; Quintana, Enrico C.; Kastengren, Alan L.; Son, Steven F.; Meyer, Terrence R.; Hoffmeister, Kathryn N.

Phosphor thermometry has been successfully applied within several challenging environments. Typically, the thermographic phosphors are excited by an ultraviolet light source, and the temperature-dependent spectral or temporal response is measured. However, this is challenging or impossible in optically thick environments. In addition, emission from other sources (e.g., a flame) may interfere with the optical phosphor emission. A temperature dependent x-ray excitation/emission could alleviate these issues as x-rays could penetrate obscurants with no interference from flame luminosity. In addition, x-ray emission could allow for thermometry within solids while simultaneously x-ray imaging the structural evolution. In this study, select thermographic phosphors were excited via x-ray radiation, and their x-ray emission characteristics were measured at various temperatures. Several of the phosphors showed varying levels of temperature dependence with the strongest sensitivity occurring for YAG:Dy and ZnGa2O4:Mn. This approach opens a path for less intrusive temperature measurements, particularly in optically opaque multiphase and solid phase combustion environments.

More Details
5 Results
5 Results