Laser-Based Characterization of Reflected Shock Tunnel Freestream Velocity and Multi-Species Thermal Nonequilibrium with Comparison to Modeling
Abstract not provided.
Abstract not provided.
Combustion and Flame
Understanding titanium particle combustion processes is critical not only for characterizing existing pyrotechnic systems but also for creating new igniter designs. In order to characterize titanium particle combustion processes, morphologies, and temperatures, simultaneous spatially-resolved electric field holography and imaging pyrometry techniques were used to capture post-ignition data at up to 7 kHz. Due to the phase and thermal distortions present in the combustion cloud, traditional digital in-line holography techniques fail to capture accurate data. In this work, electric field holography techniques are used in order to cancel distortions and capture the three-dimensional spatial locations and diameters of the particles. In order to estimate the projected surface temperatures of the titanium particles, an imaging pyrometry method that ratios emission at 750 and 850 nm is utilized. Using these diagnostics, joint statistics are collected for particle size, morphology, velocity, and temperature. Results show that, early in the combustion process, the titanium particles are primarily oxidized by potassium perchlorate inside the igniter cup, resulting in projected surface temperatures near 3000 K. Later in the process, the particles interact with ambient air, resulting in lower surface temperatures around 2400 K and the formation of flame zones. These results are consistent with adiabatic flame temperature predictions as well as particle morphology observations of a titanium core with a TiO2 surface. Late stage particle expansion, star fragmentation, and molten droplet breakup events are also observed using the time-resolved morphology and temperature diagnostics. These results illustrate the different stages of titanium particle combustion in pyrotechnic environments, which can be used to inform improvements in next-generation igniters.
Abstract not provided.
AIAA SciTech Forum and Exposition, 2023
Measurements of gas-phase temperature and pressure in hypersonic flows are important for understanding gas-phase fluctuations which can drive dynamic loading on model surfaces and to study fundamental compressible flow turbulence. To achieve this capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied in Sandia National Laboratories’ cold-flow hypersonic wind tunnel facility. Measurements were performed for tunnel freestream temperatures of 42–58 K and pressures of 1.5–2.2 Torr. The CARS measurement volume was translated in the flow direction during a 30-second tunnel run using a single computer-controlled translation stage. After broadband femtosecond laser excitation, the rotational Raman coherence was probed twice, once at an early time where the collisional environment has not affected the Raman coherence, and another at a later time after the collisional environment has led to significant dephasing of the Raman coherent. The gas-phase temperature was obtained primarily from the early-probe CARS spectra, while the gas-phase pressure was obtained primarily from the late-probe CARS spectra. Challenges in implementing fs CARS in this facility such as changes in the nonresonant spectrum at different measurement location are discussed.
AIAA SciTech Forum and Exposition, 2023
We report 100-kHz burst-mode planar laser-induced fluorescence imaging of the nitricoxide molecule in the free-piston facility at Sandia National Laboratories. Cylinder wakestartup transients are visualized in high-temperature (T ~ 3000 K) post-shock flow with the facility in the shock-tube mode of operation. In the reflected shock-tunnel mode, NO PLIF visualization of a 4.6-MJ/kg, 3 km/s startup flow over a cylinder is presented, and free-stream molecular-tagging velocimetry exploiting the long fluorescence lifetime of free-stream NO is demonstrated.
AIAA SciTech Forum and Exposition, 2023
Here we consider the shock stand-off distance for blunt forebodies using a simplified differential-based approach with extensions for high enthalpy dissociative chemistry effects. Following Rasmussen [4], self-similar differential equations valid for spherical and cylindrical geometries that are modified to focus on the shock curvature induced vorticity in the immediate region of the shock are solved to provide a calorically perfect estimate for shock standoff distance that yields good agreement with classical theory. While useful as a limiting case, strong shock (high enthalpy) calorically perfect results required modification to include the effects of dissociative thermo-chemistry. Using a dissociative ideal gas model for dissociative equilibrium behavior combined with shock Hugoniot constraints we solve to provide thermodynamic modifications to the shock density jump thereby sensitizing the simpler result for high enthalpy effects. The resulting estimates are then compared to high enthalpy stand-off data from literature, recent dedicated high speed shock tunnel measurements and multi-temperature partitioned implementation CFD data sets. Generally, the theoretical results derived here compared well with these data sources, suggesting that the current formulation provides an approximate but useful estimate for shock stand-off distance.
AIAA SciTech Forum and Exposition, 2023
We demonstrate coherent anti-Stokes Raman scattering (CARS) detection of the CO and N2 molecules in the reaction layer of a graphite material sample exposed to the 5000-6000 K plume of an inductively-coupled plasma torch operating on air. CO is a dominant product in the surface oxidative reaction of graphite and lighter weight carbon-based thermalprotection-system materials. A standard nanosecond CARS approach using Nd:YAG and a single broadband dye laser with ~200 cm-1 spectral width is employed for demonstration measurements, with the CARS volume located less than 1-mm from an ablating graphite sample. Quantitative measurements of both temperature and the CO/N2 ratio are obtained from model fits to CARS spectra that have been averaged for 5 laser shots. The results indicate that CARS can be used for space- and time-resolved detection of CO in high-temperature ablation tests near atmospheric pressure.
AIAA SciTech Forum and Exposition, 2023
The current interest in hypersonic flows and the growing importance of plasma applications necessitate the development of diagnostics for high-enthalpy flow environments. Reliable and novel experimental data at relevant conditions will drive engineering and modeling efforts forward significantly. This study demonstrates the usage of nanosecond Coherent Anti-Stokes Raman Scattering (CARS) to measure temperature in an atmospheric, high-temperature (> 5500 K) air plasma. The experimental configuration is of interest as the plasma is close to thermodynamic equilibrium and the setup is a test-bed for heat shield materials. The determination of the non-resonant background at such high-temperatures is explored and rotational-vibrational equilibrium temperatures of the N2 ground state are determined via fits of the theory to measured spectra. Results show that the accuracy of the temperature measurements is affected by slow periodic variations in the plasma, causing sampling error. Moreover, depending on the experimental configuration, the measurements can be affected by two-beam interaction, which causes a bias towards lower temperatures, and stimulated Raman pumping, which causes a bias towards higher temperatures. The successful demonstration of CARS at the present conditions, and the exploration of its sensitivities, paves the way towards more complex measurements, e.g. close to interfaces in high-enthalpy plasma flows.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
High-enthalpy hypersonic flight represents an application space of significant concern within the current national-security landscape. The hypersonic environment is characterized by high-speed compressible fluid mechanics and complex reacting flow physics, which may present both thermal and chemical nonequilibrium effects. We report on the results of a three-year LDRD effort, funded by the Engineering Sciences Research Foundation (ESRF) investment area, which has been focused on the development and deployment of new high-speed thermochemical diagnostics capabilities for measurements in the high-enthalpy hypersonic environment posed by Sandia's free-piston shock tunnel. The project has additionally sponsored model development efforts, which have added thermal nonequilibrium modeling capabilities to Sandia codes for subsequent design of many of our shock-tunnel experiments. We have cultivated high-speed, chemically specific, laser-diagnostic approaches that are uniquely co-located with Sandia's high-enthalpy hypersonic test facilities. These tools include picosecond and nanosecond coherent anti-Stokes Raman scattering at 100-kHz rates for time-resolved thermometry, including thermal nonequilibrium conditions, and 100-kHz planar laser-induced fluorescence of nitric oxide for chemically specific imaging and velocimetry. Key results from this LDRD project have been documented in a number of journal submissions and conference proceedings, which are cited here. The body of this report is, therefore, concise and summarizes the key results of the project. The reader is directed toward these reference materials and appendices for more detailed discussions of the project results and findings.
We present the results of an LDRD project, funded by the Nuclear Deterrence IA, to develop capabilities for quantitative assessment of pyrotechnic thermal output. The thermal battery igniter is used as an exemplar system. Experimental methodologies for thermal output evaluation are demonstrated here, which can help designers and engineers better specify pyrotechnic components , provide thermal output guidelines for new formulations, and generate new metrics for assessing component performance and margin given a known failure condition. A heat-transfer analysis confirms that the dominant mode of energy transfer from the pyrotechnic output plume to the heat pellet is conduction via deposition of hot titanium particles. A simple lumped-parameter model of titanium particle heat transfer and a detailed multi-phase model of deposition heat transfer are discussed. Pyrotechnic function, as defined by "go/no-go" standoff testing of a heat pellet, is correlated with experimentally measured igniter plume temperature, titanium metal particle temperature, and energy deposition. Three high-speed thermal diagnostics were developed for this task. A three-color imaging pyrometer, acquiring 100k images per second on three color channels, is deployed for measurement of titanium particle temperatures. Complimentary measurements of the overall igniter plume emission ("color") temperature were conducted using a transmission-grating spectrograph in line-imaging mode. Heat flux and energy deposition to a cold wall at the heat-pellet location were estimated using an eroding thermocouple probe, with a frequency response of ~5 kHz. Ultimate "go/no-go" function in the igniter/heat-pellet system was correlated with quantitative thermal metrics, in particular surface energy deposition and plume color temperature. Titanium metal-particle and plume color temperatures both experience an upper bound approximated by the 3245-K boiling point of TiO2. Average metal-particle temperatures remained nearly constant for all standoff distances at T = 2850 K, ± 300 K, while plume color temperature and heat flux decay with standoff—suggesting that heat-pellet failure results from a drop in metal-particle flux and not particle temperature. At 50% likelihood of heat-pellet failure, peak time-resolved plume color temperatures drop well below TiO2 boiling to ~2000 - 2200 K, near the TiO2 melting point. Estimates of peak heat flux decline from up to 1 GW/m2 for near-field standoffs to below 320 MW/m2 at 50% failure likelihood.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Chemical Physics
We report pure-rotational N2-N2, N2-air, and O2-air S-branch linewidths for temperatures of 80-200 K by measuring the time-dependent decay of rotational Raman coherences in an isentropic free-jet expansion from a sonic nozzle. We recorded pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) spectra along the axial centerline of the underexpanded jet, within the barrel shock region upstream of the Mach disk. The dephasing of the pure-rotational Raman coherence was monitored using probe-time-delay scans at different axial positions in the jet, corresponding to varying local temperatures and pressures. The local temperature was obtained by fitting CARS spectra acquired at zero probe time delay, where the impact of collisions was minimal. The measured decay of each available Raman transition was fit to a dephasing constant and corrected for the local pressure, which was obtained from the CARS-measured static temperature and thermodynamic relationships for isentropic expansion from the known stagnation state. Nitrogen self-broadened transitions decayed more rapidly than those broadened in air for all temperatures, corresponding to higher Raman linewidths. In general, the measured S-branch linewidths deviated significantly in absolute and relative magnitudes from those predicted by extrapolating the modified exponential gap model to low temperatures. The temperature dependence of the Raman linewidth for each measured rotational state of nitrogen (J ≤ 10) and oxygen (N ≤ 11) was fit to a temperature-dependent power law over the measurable temperature domain (80-200 K) and extrapolated to both higher rotational states and room temperature. The measured and modeled low-temperature linewidth data provided here will aid low temperature gas-phase pressure measurements with fs/ps CARS.
Abstract not provided.
Optics Letters
Demonstration of broadband nanosecond coherent anti-Stokes Raman scattering (CARS) using a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at a pulse repetition rate of 40 kHz. The NOPO is pumped with the 355-nm output of a burst-mode Nd:YAG laser at 50 mJ/pulse for 45 pulses and produces an output centered near 607 nm, with a bandwidth of 370 cm−1 at energies of 5 mJ/pulse. A planar BOXCARS phase matching scheme uses the broadband NOPO output as the Stokes beam and the narrowband 532-nm burst-mode output for the two CARS pump beams for single-laser-shot nitrogen thermometry in near adiabatic H2/air flames at temperatures up to 2200 K.
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Demonstration of broadband nanosecond output from a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at 40 kHz. The NOPO is pumped by 355-nm output at 50 mJ/pulse for 45 pulses. A bandwidth of 540 cm-1 was achieved from the OPO with a conversion efficiency of 10% for 5 mJ/pulse. Higher bandwidths up to 750 cm-1 were readily achievable at reduced performance and beam quality. The broadband NOPO output was used for a planar BOXCARS phase matching scheme for N2 CARS measurements in a near adiabatic H2/air flame. Single-shot CARS measurements were taken for equivalence ratios of φ=0.52-0.86 for temperatures up to 2200 K.
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Measurements of gas-phase pressure and temperature in hypersonic flows are important to understanding fluid–structure interactions on vehicle surfaces, and to develop compressible flow turbulence models. To achieve this measurement capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied at Sandia National Laboratories’ hypersonic wind tunnel. After excitation of rotational Raman transitions by a broadband femtosecond laser pulse, two probe pulses are used: one at an early time where the collisional environment has largely not affected the Raman coherence, and another at a later time after the collisional environment has led to significant J-dependent dephasing of the Raman coherence. CARS spectra from the early probe are fit for temperature, while the later CARS spectra are fit for pressure. Challenges related to implementing fs CARS in cold-flow hypersonic facilities are discussed. Excessive fs pump energy can lead to flow perturbations. The output of a second-harmonic bandwidth compressor (SHBC) is spectrally filtered using a volume Bragg grating to provide the narrowband ps probe pulses and enable single-shot CARS measurements at 1 kHz. Measurements are demonstrated at temperatures and pressures relevant to cold-flow hypersonic wind tunnels in a low-pressure cryostat with an initial demonstration in the hypersonic wind tunnel.