Publications

Results 1601–1800 of 96,771

Search results

Jump to search filters

Evaluation of dual-weighted residual and machine learning error estimation for projection-based reduced-order models of steady partial differential equations

Computer Methods in Applied Mechanics and Engineering

Blonigan, Patrick J.; Parish, Eric J.

Projection-based reduced-order models (pROMs) show great promise as a means to accelerate many-query applications such as forward error propagation, solving inverse problems, and design optimization. In order to deploy pROMs in the context of high-consequence decision making, accurate error estimates are required to determine the region(s) of applicability in the parameter space. The following paper considers the dual-weighted residual (DWR) error estimate for pROMs and compares it to another promising pROM error estimate, machine learned error models (MLEM). In this paper, we show how DWR can be applied to ROMs and then evaluate DWR on two partial differential equations (PDEs): a two-dimensional linear convection–reaction–diffusion equation, and a three-dimensional static hyper-elastic beam. It is shown that DWR is able to estimate errors for pROMs extrapolating outside of their training set while MLEM is best suited for pROMs used to interpolate within the pROM training set.

More Details

The influence of intake flow and coolant temperature on gasoline spray morphology during early-injection DISI engine operation

International Journal of Engine Research

Reuss, David L.; Kim, Namho K.; Sjoberg, Carl M.

Multi-hole gasoline injectors operating at conditions spanning throttled early-intake stroke operation produce spray plumes that either remained separated or merge and collapse due to flash boiling. Flash boiling occurs due to the sudden expansion of gas bubbles in the liquid fuel at high fuel temperature and low ambient pressure. This study records high-speed images of spray-morphology changes due to in-cylinder flow, thereby revealing operating conditions that do and do not affect the self-induced morphology observed in quiescent vessels. Specifically, in a central-injection, four-valve, high-tumble engine, where the thermodynamic state and in-cylinder cross flow are dynamic. Motivated by cold start and hot restart operation, the fuel pressure, coolant temperature, in-cylinder air pressure, and engine rpm were systematically varied over relevant operating conditions, which bracketed the range from non- to flash-boiling sprays. The results reveal the operating conditions at which the in-cylinder cross flow disrupts the spray morphology as well as the extent of the disruption. At 650 rpm, the spray morphology was similar to that observed in quiescent vessels at nominally equivalent fuel temperature and in-cylinder pressure, indicating that the spray’s self-induced entrainment flow dominated the in-cylinder flow. However, for fuel temperature and ambient pressure near the transition between non- and flash-boiling, the intake cross flow at higher engine speed (1950 rpm) significantly disrupted the spray morphology. The high cross-flow velocity appears to induce plume merging and collapse, whereas none was evident at low rpm (650 rpm). This study led to the postulate that the spray merging and collapse are governed by the rate of atomization near the nozzle exit, presumed to be controlled by either or both aerodynamic atomization and flash-boiling intensity. It would then follow that spray modeling in CFD requires atomization models that blend the effects of both physical processes.

More Details

The influence of physical and algorithmic factors on simulated far-field waveforms and source–time functions of underground explosions using unsupervised machine learning

Geophysical Journal International

Harding, Jennifer L.; Preston, Leiph A.; Eliassi, Mehdi E.

Characterizing explosion sources and differentiating between earthquake and underground explosions using distributed seismic networks becomes non-trivial when explosions are detonated in cavities or heterogeneous ground material. Moreover, there is little understanding of how changes in subsurface physical properties affect the far-field waveforms we record and use to infer information about the source. Simulations of underground explosions and the resultant ground motions can be a powerful tool to systematically explore how different subsurface properties affect far-field waveform features, but there are added variables that arise from how we choose to model the explosions that can confound interpretation. To assess how both subsurface properties and algorithmic choices affect the seismic wavefield and the estimated source functions, we ran a series of 2-D axisymmetric non-linear numerical explosion experiments and wave propagation simulations that explore a wide array of parameters. We then inverted the synthetic far-field waveform data using a linear inversion scheme to estimate source–time functions (STFs) for each simulation case. We applied principal component analysis (PCA), an unsupervised machine learning method, to both the far-field waveforms and STFs to identify the most important factors that control variance in the waveform data and differences between cases. For the far-field waveforms, the largest variance occurs in the shallower radial receiver channels in the 0–50 Hz frequency band. For the STFs, both peak amplitude and rise times across different frequencies contribute to the variance. We find that the ground equation of state (i.e. lithology and rheology) and the explosion emplacement conditions (i.e. tamped versus cavity) have the greatest effect on the variance of the far-field waveforms and STFs, with the ground yield strength and fracture pressure being secondary factors. Differences in the PCA results between the far-field waveforms and STFs could possibly be due to near-field non-linearities of the source that are not accounted for in the estimation of STFs and could be associated with yield strength, fracture pressure, cavity radius and cavity shape parameters. Other algorithmic parameters are found to be less important and cause less variance in both the far-field waveforms and STFs, meaning algorithmic choices in how we model explosions are less important, which is encouraging for the further use of explosion simulations to study how physical Earth properties affect seismic waveform features and estimated STFs.

More Details

Next-Generation Marine Energy Software Needs Assessment

Ruehl, Kelley M.; Tom, Nathan; Leon Quiroga, Jorge A.; Michelen Strofer, Carlos A.; Ogden, David; Topper, Mathew; Baca, Elena

Over the past decade the marine energy industry has continued to grow and evolve, with new concepts and technologies constantly being pursued. Additionally, the field of computing is vastly different today than it was five or ten years ago. By utilizing advanced software and hardware architectures, like graphics processing units as well as parallelization and high-performance computing resources, software can produce higher quality outputs and a higher volume of outputs. These software and hardware resources can enable the marine energy community to exploit computational advancements from other research fields, which can include machine learning, differentiable programming, and controls co-design. Better integration of existing software and development of potential new software is necessary to take advantage of trends in modern computing and respond to the current and future needs of the marine energy community. In order to better understand the existing marine energy software landscape and industry needs, DOE's Water Power Technologies Office (WPTO) tasked Sandia National Laboratories and the National Renewable Energy Laboratory to update the needs assessment by identifying existing software gaps and software needs, and assisting WPTO in planning the next wave of marine energy software development. The proposed effort involved cataloguing and analyzing the available data on existing software related to marine energy. The marine energy software landscape has vastly changed in the last ten years. There are now nearly 230 different software packages utilized by the marine energy sector, compared to a decade ago when the Cardinal Engineering survey identified approximately 40 software packages. In 2012, the marine energy software landscape was captured in two tables, whereas the current marine energy software landscape required development of a software database to collect and categorize software.

More Details

Modeling-Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage

Seismological Research Letters

Chang, Kyung W.; Yoon, Hongkyu Y.

Induced seismicity is an inherent risk associated with geologic carbon storage (GCS) in deep rock formations that could contain undetected faults prone to failure. Modeling-based risk assessment has been implemented to quantify the potential of injection-induced seismicity, but typically simplified multiscale geologic features or neglected multiphysics coupled mechanisms because of the uncertainty in field data and computational cost of field-scale simulations, which may limit the reliable prediction of seismic hazard caused by industrial-scale CO2 storage. The degree of lateral continuity of the stratigraphic interbedding below the reservoir and depth-dependent fault permeability can enhance or inhibit pore-pressure diffusion and corresponding poroelastic stressing along a basement fault. This study presents a rigorous modeling scheme with optimal geological and operational parameters needed to be considered in seismic monitoring and mitigation strategies for safe GCS.

More Details

Effects of a CFD-improved dimple stepped-lip piston on thermal efficiency and emissions in a medium-duty diesel engine

International Journal of Engine Research

Wu, Angela; Cho, Seokwon; Lopez Pintor, Dario L.; Busch, Stephen; Perini, Federico; Reitz, Rolf D.

Diesel piston-bowl shape is a key design parameter that affects spray-wall interactions and turbulent flow development, and in turn affects the engine’s thermal efficiency and emissions. It is hypothesized that thermal efficiency can be improved by enhancing squish-region vortices as they are hypothesized to promote fuel-air mixing, leading to faster heat-release rates. However, the strength and longevity of these vortices decrease with advanced injection timings for typical stepped-lip (SL) piston geometries. Dimple stepped-lip (DSL) pistons enhance vortex formation at early injection timings. Previous engine experiments with such a bowl show 1.4% thermal efficiency gains over an SL piston. However, soot was increased dramatically [SAE 2022-01-0400]. In a previous study, a new DSL bowl was designed using non-combusting computational fluid dynamic simulations. This improved DSL bowl is predicted to promote stronger, more rotationally energetic vortices than the baseline DSL piston: it employs shallower, narrower, and steeper-curved dimples that are placed further out into the squish region. In the current experimental study, this improved bowl is tested in a medium-duty diesel engine and compared against the SL piston over an injection timing sweep at low-load and part-load operating conditions. No substantial thermal efficiency gains are achieved at the early injection timing with the improved DSL design, but soot emissions are lowered by 45% relative to the production SL piston, likely due to improved air utilization and soot oxidation. However, these benefits are lost at late injection timings, where the DSL piston renders a lower thermal efficiency than that of the SL piston. Energy balance analyses show higher wall heat transfer with the DSL piston than with the SL piston despite a 1.3% reduction in the piston surface area. Vortex enhancement may not necessarily lead to improved efficiency as more energetic squish-region vortices can lead to higher convective heat transfer losses.

More Details

Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform

Review of Scientific Instruments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Laros, James H.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, Patrick K.; Kimmel, Mark W.; Mangan, Michael M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Daniel E.; Hanson, Joseph C.; Harding, Eric H.; Perea, L.; Robertson, Grafton K.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, G.E.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

More Details

Drop Interactions with the Conical Shock Structure Generated by a Mach 4.5 Projectile

AIAA Journal

Guildenbecher, Daniel R.; Delgado, Paul M.; White, Glen W.; Reardon, Sam M.; Stauffacher, Howard L.; Beresh, Steven J.; Daniel, Kyle

This work presents measurements of liquid drop deformation and breakup time behind approximately conical shock waves and evaluates the predictive capabilities of low-order models and correlations developed using planar shock experiments. A conical shock was approximated by firing a bullet at Mach 4.5 past a vertical column of water drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension were characterized using backlit stereo images taken at 500 kHz. The gas density and velocity fields experienced by the drops were estimated using a Reynolds-averaged Navier-Stokes simulation of the bullet. Classical correlations predict drop breakup times and deformation in error by a factor of 3 or more. The Taylor analogy breakup (TAB) model predicts deformed drop diameters that agree within the confidence bounds of the ensemble-averaged experimental values using a dimensionless constant C2 = 2 compared to the accepted value C2 = 2/3. Results demonstrate existing correlations are inadequate for predicting the drop response to the three-dimensional relaxation of the flowfield downstream of a conical-like shock and suggest the TAB model results represent a path toward improved predictions.

More Details

Hypersonic Fluid–Structure Interaction on a Cone–Slice–Ramp Geometry

AIAA Journal

Pandey, Anshuman; Casper, Katya M.; Beresh, Steven J.; Bhakta, Rajkumar; Spillers, Russell W.

Fluid–structure interactions were measured between a representative control surface and the hypersonic flow deflected by it. The control surface is simplified as a spanwise finite ramp placed on a longitudinal slice of a cone. The front surface of the ramp contains a thin panel designed to respond to the unsteady fluid loading arising from the shock-wave/boundary-layer interactions. Experiments were conducted at Mach 5 and Mach 8 with ramps of different angles. High-speed schlieren captured the unsteady flow dynamics and accelerometers behind the thin panel measured its structural response. Panel vibrations were dominated by natural modes that were excited by the broadband aerodynamic fluctuations arising in the flowfield. However, increased structural response was observed in two distinct flow regimes: 1) attached or small separation interactions, where the transitional regime induced the strongest panel fluctuations. This was in agreement with the observation of increased convective undulations or bulges in the separation shock generated by the passage of turbulent spots, and 2) large separated interactions, where shear layer flapping in the laminar regime produced strong panel response at the flapping frequency. In addition, panel heating during the experiment caused a downward shift in its natural mode frequencies.

More Details

Excited-State Dynamics during Primary C–I Homolysis in Acetyl Iodide Revealed by Ultrafast Core-Level Spectroscopy

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Tross, Jan T.; Carter-Fenk, Kevin; Cole-Filipiak, Neil C.; Schrader, Paul E.; Word, Mi'Kayla; McCaslin, Laura M.; Head Gordon, Martin; Ramasesha, Krupa R.

In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to $nπ_{C=O}$$^*$ states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed $nπ_{C=O}$$^*$ and $nπ_{C–I}$$^*$ character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin–orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C–I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic ab initio molecular dynamics and EOM-CCSD calculations of the N$_{4,5}$ edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C–I homolysis. Here, by examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C–I bond photolysis in which d → σ* transitions give way to d → p excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4d → 5d transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental–theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin–orbit coupled system.

More Details

Toward accurate prediction of partial-penetration laser weld performance informed by three-dimensional characterization – Part II: μCT based finite element simulations

Tomography of Materials and Structures

Skulborstad, Alyssa J.; Madison, Jonathan D.; Polonsky, Andrew P.; Jin, Huiqing J.; Jones, Amanda; Sanborn, Brett S.; Kramer, Sharlotte L.; Antoun, Bonnie R.; Lu, Wei-Yang L.; Karlson, Kyle N.

The mechanical behavior of partial-penetration laser welds exhibits significant variability in engineering quantities such as strength and apparent ductility. Understanding the root cause of this variability is important when using such welds in engineering designs. In Part II of this work, we develop finite element simulations with geometry derived from micro-computed tomography (μCT) scans of partial-penetration 304L stainless steel laser welds that were analyzed in Part I. We use these models to study the effects of the welds’ small-scale geometry, including porosity and weld depth variability, on the structural performance metrics of weld ductility and strength under quasi-static tensile loading. We show that this small-scale geometry is the primary cause of the observed variability for these mechanical response quantities. Additionally, we explore the sensitivity of model results to the conversion of the μCT data to discretized model geometry using different segmentation algorithms, and to the effect of small-scale geometry simplifications for pore shape and weld root texture. The modeling approach outlined and results of this work may be applicable to other material systems with small-scale geometric features and defects, such as additively manufactured materials.

More Details

Liquid hydrogen storage system for heavy duty trucks: Configuration, performance, cost, and safety

International Journal of Hydrogen Energy

Ahluwalia, R.K.; Roh, H.S.; Peng, J.K.; Papadias, D.; Baird, Austin R.; Hecht, Ethan S.; Ehrhart, Brian D.; Muna, Alice B.; Ronevich, Joseph A.; Houchins, C.; Killingsworth, N.J.; Aceves, S.M.

We investigate the potential of liquid hydrogen storage (LH2) on-board Class-8 heavy duty trucks to resolve many of the range, weight, volume, refueling time and cost issues associated with 350 or 700-bar compressed H2 storage in Type-3 or Type-4 composite tanks. We present and discuss conceptual storage system configurations capable of supplying H2 to fuel cells at 5-bar with or without on-board LH2 pumps. Structural aspects of storing LH2 in double walled, vacuum insulated, and low-pressure Type-1 tanks are investigated. Structural materials and insulation methods are discussed for service at cryogenic temperatures and mitigation of heat leak to prevent LH2 boil-off. Failure modes of the liner and shell are identified and analyzed using the regulatory codes and detailed finite element (FE) methods. The conceptual systems are subjected to a failure modes and effects analysis (FMEA) and a safety, codes, and standards (SCS) review to rank failures and identify safety gaps. The results indicate that the conceptual systems can reach 19.6% useable gravimetric capacity, 40.9 g-H2/L useable volumetric capacity and $174–183/kg-H2 cost (2016 USD) when manufactured 100,000 systems annually.

More Details

Unexpected Thermomechanical Behavior of Off-Stoichiometry Epoxy/Amine Materials

Macromolecules

Foster, Jeffrey C.; Laros, James H.; Yoon, Alana Y.; Martinez, Estevan J.; Leguizamon, Samuel C.; Bezik, Cody T.; Frischknecht, Amalie F.; Redline, Erica M.

Recent studies on off-stoichiometric thermosets reveal unique viscoelastic behavior derived from increased free volume and physical interactions between chain ends. To understand structural characteristics arising from cure and its effect on properties, we developed a Monte Carlo model based on step-growth polymerization. Our model accurately predicted structure-property trends for a two-component system of EPON 828 (EPON) and ethylenediamine. A second epoxy monomer, D.E.R. 732 (DER), was investigated to modulate Tg. Binary mixtures of EPON and DER in off-stoichiometric, amine-rich formulations resulted in nonlinear evolution of thermomechanical properties with respect to initial formulation stoichiometry. Modifying our model with kinetic parameters allowing for differential epoxide/amine reaction kinetics only partially accounted for trends in Tg, suggesting that spatiotemporal contributions─not captured by our model─were significant determinants of material properties compared to polymer architecture for three-component systems. These findings underpin the importance of spatial awareness in modeling to inform the development of dynamic thermosets.

More Details

Electrode plasma formation and melt in Z-pinch accelerators

Physical Review Accelerators and Beams

Bennett, Nichelle L.; Welch, D.R.; Cochrane, Kyle C.; Leung, Kevin L.; Thoma, C.; Cuneo, M.E.; Laros, James H.

Recent studies of power flow and particle transport in multi-MA pulsed-power accelerators demonstrate that electrode plasmas may reduce accelerator efficiency by shunting current upstream from the load. The detailed generation and evolution of these electrode plasmas are examined here using fully relativistic, Monte Carlo particle-in-cell (PIC) and magnetohydrodynamic (MHD) simulations over a range of peak currents (8–48 MA). The PIC calculations, informed by vacuum science, describe the electrode surface breakdown and particle transport prior to electrode melt. The MHD calculations show the bulk electrode evolution during melt. The physical description provided by this combined study begins with the rising local magnetic field that increases the local electrode surface temperature. This initiates the thermal desorption of contaminants from the electrode surface, with contributions from atoms outgassing from the bulk metal. The contaminants rapidly ionize forming a 1015-1018 cm-3 plasma that is effectively resistive while weakly collisional because it is created within, and rapidly penetrated by, a strong magnetic field (> 30 T). Prior to melting, the density of this surface plasma is limited by the concentration of absorbed contaminants in the bulk (~1019 cm-3 for hydrogen), its diffusion, and ionization. Eventually, the melting electrodes form a conducting plasma (1021-1023 cm-3) that experiences j × B compression and a typical decaying magnetic diffusion profile. This physical sequence ignores the transport of collisional plasmas of 1019 cm-3 which may arise from electrode defects and associated instabilities. Nonetheless, this picture of plasma formation and melt may be extrapolated to higher-energy pulsed-power systems.

More Details

Multifidelity Neural Network Formulations for Prediction of Reactive Molecular Potential Energy Surfaces

Journal of Chemical Information and Modeling

Zador, Judit Z.; Najm, H.N.; Yang, Yoona

This paper focuses on the development of multifidelity modeling approaches using neural network surrogates, where training data arising from multiple model forms and resolutions are integrated to predict high-fidelity response quantities of interest at lower cost. We focus on the context of quantum chemistry and the integration of information from multiple levels of theory. Important foundations include the use of symmetry function-based atomic energy vector constructions as feature vectors for representing structures across families of molecules and single-fidelity neural network training capabilities that learn the relationships needed to map feature vectors to potential energy predictions. These foundations are embedded within several multifidelity topologies that decompose the high-fidelity mapping into model-based components, including sequential formulations that admit a general nonlinear mapping across fidelities and discrepancy-based formulations that presume an additive decomposition. Methodologies are first explored and demonstrated on a pair of simple analytical test problems and then deployed for potential energy prediction for C5H5 using B2PLYP-D3/6-311++G(d,p) for high-fidelity simulation data and Hartree-Fock 6-31G for low-fidelity data. For the common case of limited access to high-fidelity data, our computational results demonstrate that multifidelity neural network potential energy surface constructions achieve roughly an order of magnitude improvement, either in terms of test error reduction for equivalent total simulation cost or reduction in total cost for equivalent error.

More Details

Ultraviolet digital holographic microscopy (DHM) of micron-scale particles from shocked Sn ejecta

Optics Express

Guildenbecher, Daniel R.; McMaster, Anthony M.; Corredor, Andrew; Malone, Bob; Mance, Jason; Rudziensky, Emma; Sorenson, Danny; Danielson, Jeremy; Duke, Dana L.

A cloud of very fast, O(km/s), and very fine, O(µm), particles may be ejected when a strong shock impacts and possibly melts the free surface of a solid metal. To quantify these dynamics, this work develops an ultraviolet, long-working distance, two-pulse Digital Holographic Microscopy (DHM) configuration and is the first to replace film recording with digital sensors for this challenging application. A proposed multi-iteration DHM processing algorithm is demonstrated for automated measures of the sizes, velocities, and three-dimensional positions of non-spherical particles. Ejecta as small as 2 µm diameter are successfully tracked, while uncertainty simulations indicate that particle size distributions are accurately quantified for diameters ≥4 µm. These techniques are demonstrated on three explosively driven experiments. Measured ejecta size and velocity statistics are shown to be consistent with prior film-based recording, while also revealing spatial variations in velocities and 3D positions that have yet to be widely investigated. Having eliminated time-consuming analog film processing, the methodologies proposed here are expected to significantly accelerate future experimental investigation of ejecta physics.

More Details

Sputter-Deposited Mo Thin Films: Multimodal Characterization of Structure, Surface Morphology, Density, Residual Stress, Electrical Resistivity, and Mechanical Response

Integrating Materials and Manufacturing Innovation

Kalaswad, Matias; Custer, Joyce O.; Addamane, Sadhvikas J.; Khan, Ryan M.; Jauregui, Luis J.; Babuska, Tomas F.; Henriksen, Amelia; DelRio, Frank W.; Dingreville, Remi P.; Adams, David P.

Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. Here, the phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors’ preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.

More Details

High–Yield Deterministic Focused Ion Beam Implantation of Quantum Defects Enabled by In Situ Photoluminescence Feedback

Advanced Science

Laros, James H.; Titze, Michael T.; Flores, Anthony R.; Campbell, DeAnna M.; Henshaw, Jacob D.; Jones, Andrew C.; Htoon, Han; Bielejec, Edward S.

Focused ion beam implantation is ideally suited for placing defect centers in wide bandgap semiconductors with nanometer spatial resolution. However, the fact that only a few percent of implanted defects can be activated to become efficient single photon emitters prevents this powerful capability to reach its full potential in photonic/electronic integration of quantum defects. Here an industry adaptive scalable technique is demonstrated to deterministically create single defects in commercial grade silicon carbide by performing repeated low ion number implantation and in situ photoluminescence evaluation after each round of implantation. An array of 9 single defects in 13 targeted locations is successfully created—a ≈70% yield which is more than an order of magnitude higher than achieved in a typical single pass ion implantation. The remaining emitters exhibit non-classical photon emission statistics corresponding to the existence of at most two emitters. This approach can be further integrated with other advanced techniques such as in situ annealing and cryogenic operations to extend to other material platforms for various quantum information technologies.

More Details

Metal Oxide Particles as Atmospheric Nuclei: Exploring the Role of Metal Speciation in Heterogeneous Efflorescence and Ice Nucleation

ACS Earth and Space Chemistry

Schiffman, Zachary R.; Fernanders, Marium S.; Davis, Ryan D.; Tolbert, Margaret A.

Mineral dust can indirectly impact climate by nucleation of atmospheric solids, for example, by heterogeneously nucleating ice in mixed-phase clouds or by impacting the phase of aerosols and clouds through contact nucleation. The effectiveness toward nucleation of individual components of mineral dust requires further study. Here, the nucleation behavior of metal oxide nanoparticle components of atmospheric mineral dust is investigated. A long-working-distance optical trap is used to study contact and immersion nucleation of ammonium sulfate by transition-metal oxides, and an environmental chamber is used to probe depositional ice nucleation on metal oxide particles. Previous theory dictates that ice nucleation and heterogeneous nucleation of atmospheric salts can be impacted by several factors including morphology, lattice match, and surface area. Here, we observe a correlation between the cationic oxidation states of the metal oxide heterogeneous nuclei and their effectiveness in causing nucleation in both contact efflorescence mode and depositional freezing mode. In contrast to the activity of contact efflorescence, the same metal oxide particles did not cause a significant increase in efflorescence relative humidity when immersed in the droplet. These experiments suggest that metal speciation, possibly as a result of cationic charge sites, may play a role in the effectiveness of nucleation that is initiated at particle surfaces.

More Details

Electrochemical-mechanical coupling measurements

Joule

Song, Yueming; Bhargava, Bhuvsmita; Stewart, David M.; Talin, A.A.; Rubloff, Gary W.; Albertus, Paul

Lithium metal solid-state batteries (LiSSBs) present new challenges in the measurement of material, component, and cell mechanical behaviors and in the measurement and theory of fundamental mechanical-electrochemical (thermodynamics, transport, and kinetics) couplings. Here, we classify the major mechanical and electrochemical-mechanical (ECM) studies underway and provide an overview of major mechanical testing platforms. We emphasize key distinctions among testing platforms, including tip- vs. platen-based sample compression, surface- vs. volume-based analysis, ease of integration with a vacuum or inert atmosphere environment, the ability to control and measure force/displacement over long periods of time, ranges of force and contact area, and others. Among the techniques we review, nanoindentation platforms offer some unique benefits associated with being able to use both tip-based nanoindentation techniques as well as platen-based compression over areas approaching 1 mm2. Sample design is also important: while most efforts are particle-based (i.e., using particles of solid electrolyte and cathode-active materials and densifying them using sintering or pressure), the resulting electrochemical response is from the overall collection of particles present. In contrast, thin-film (<1 μm) solid-state battery materials (e.g., Li, LiPON, LCO) provide well defined and uniform structures well suited for fundamental electrochemical-mechanical studies and offer an important opportunity to drive underlying scientific advances in LiSSB and other areas. We believe there are exciting opportunities to advance the measurement of both mechanical properties and electrochemical-mechanical couplings through the careful and novel co-design of test structures and experimental approaches for LiSSB materials, components, and cells.

More Details

Experimental Validation of a Command and Control Traffic Detection Model

IEEE Transactions on Dependable and Secure Computing

Vugrin, Eric D.; Hanson, Seth T.; Cruz, Gerardo C.; Glatter, Casey; Tarman, Thomas D.; Pinar, Ali P.

Network intrusion detection systems (NIDS) are commonly used to detect malware communications, including command-and-control (C2) traffic from botnets. NIDS performance assessments have been studied for decades, but mathematical modeling has rarely been used to explore NIDS performance. This paper details a mathematical model that describes a NIDS performing packet inspection and its detection of malware's C2 traffic. Here, the paper further describes an emulation testbed and a set of cyber experiments that used the testbed to validate the model. These experiments included a commonly used NIDS (Snort) and traffic with contents from a pervasive malware (Emotet). Results are presented for two scenarios: a nominal scenario and a “stressed” scenario in which the NIDS cannot process all incoming packets. Model and experiment results match well, with model estimates mostly falling within 95 % confidence intervals on the experiment means. Model results were produced 70-3000 times faster than the experimental results. Consequently, the model's predictive capability could potentially be used to support decisions about NIDS configuration and effectiveness that require high confidence results, quantification of uncertainty, and exploration of large parameter spaces. Furthermore, the experiments provide an example for how emulation testbeds can be used to validate cyber models that include stochastic variability.

More Details

Developing a model for the impact of non-conformal lithium contact on electro-chemo-mechanics and dendrite growth

Cell Reports Physical Science

Meyer, Julia M.; Harrison, Katharine L.; Mukherjee, Partha P.; Roberts, Scott A.

Lithium dendrite growth hinders the use of lithium metal anodes in commercial batteries. We present a 3D model to study the mechanical and electrochemical mechanisms that drive microscale plating. With this model, we investigate electrochemical response across a lithium protrusion characteristic of rough anode surfaces, representing the separator as a porous polymer in non-conformal contact with a lithium anode. The impact of pressure on separator morphology and electrochemical response is of particular interest, as external pressure can improve cell performance. We explore the relationships between plating propensity, stack pressure, and material properties. External pressure suppresses lithium plating due to interfacial stress and separator pore closure, leading to inhomogeneous plating rates. For moderate pressures, dendrite growth is completely suppressed, as plating will occur in the electrolyte-filled gaps between anode and separator. In fast-charging conditions and systems with low electrolyte diffusivities, the benefits of pressure are overridden by ion transport limitations.

More Details

Improved quantum yield in geometrically constrained tetraphenylethylene-based metal-organic frameworks

CrystEngComm

Sava Gallis, Dorina F.; Deneff, Jacob I.; Reyes, Raphael A.; Rodriguez, Mark A.; Valdez, Nichole R.; Rohwer, Lauren E.; Stawiasz, Katherine J.; Woods, Toby J.; Lawal, Abdul; Moore, Jeffrey S.

Herein, we report the synthesis of a novel, tetraphenylethylene-based ligand for metal-organic frameworks (MOFs). Incorporation of this ligand into a Zn- or Eu-based MOF increased the quantum yield (QY) by almost 2.5× compared to the linker alone. Furthermore, the choice of guest solvent impacted the QY and solvatochromatic response. These shifts are consistent with solvent dielectric constant as well as molecular polarizability.

More Details

Enhanced operating temperature in terahertz quantum cascade lasers based on direct phonon depopulation

Applied Physics Letters

Khalatpour, Ali; Tam, Man C.; Addamane, Sadhvikas J.; Reno, John; Wasilewski, Zbignew; Hu, Qing

Room temperature operation of terahertz quantum cascade lasers (THz QCLs) has been a long-pursued goal to realize compact semiconductor THz sources. In this paper, we report on improving the maximum operating temperature of THz QCLs to ∼261 K as a step toward the realization of this goal.

More Details

People are like plutonium

Collective Intelligence

See, Judi E.; Rosenfeld, Robert B.; Taylor, Sylvester; Wedic, K.M.

An analogy is drawn between the study of human behavior and the study of plutonium to demonstrate that soft and hard sciences are more similar than different, making the distinction moot and unproductive. The studies of human behavior and plutonium follow a common scientific research cycle that aligns with Thomas Kuhn’s views of scientific change. This common research cycle provides evidence that the thought processes and methodologies required for success are congruent in the soft and hard sciences. The primary implication from this analogy is that scientists in all disciplines should eradicate the distinction between soft and hard sciences. Focusing on similarities rather than differences among researchers from different disciplines is necessary to enhance collective intelligence and the type of transdisciplinary collaboration required to tackle difficult sociotechnical problems.

More Details

Formation of Ba3Nb0.75Mn2.25O9-6H during thermochemical reduction of Ba4NbMn3O12-12R

Acta Crystallographica Section E: Crystallographic Communications

Strange, Nicholas A.; Bell, Robert T.; Park, James E.; Stone, Kevin H.; Coker, Eric N.; Ginley, David S.

The resurgence of interest in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexagonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.

More Details

Engineering of Nanoscale Heterogeneous Transition Metal Dichalcogenide-Au Interfaces

Nano Letters

Boehm, Alexander; Fonseca, Jose J.; Thurmer, Konrad T.; Sugar, Joshua D.; Spataru, Dan C.; Robinson, Jeremy T.; Ohta, Taisuke O.

Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs’ electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.

More Details

Mid-Infrared Intersubband Cavity Polaritons in Flexible Single Quantum Well

Nano Letters

Paul, Puspita; Addamane, Sadhvikas J.; Liu, Peter Q.

Strong and ultrastrong coupling between intersubband transitions in quantum wells and cavity photons have been realized in mid-infrared and terahertz spectral regions. However, most previous works employed a large number of quantum wells on rigid substrates to achieve coupling strengths reaching the strong or ultrastrong coupling regime. In this work, we experimentally demonstrate ultrastrong coupling between the intersubband transition in a single quantum well and the resonant mode of photonic nanocavity at room temperature. We also observe strong coupling between the nanocavity resonance and the second-order intersubband transition in a single quantum well. Furthermore, we implement for the first time such intersubband cavity polariton systems on soft and flexible substrates and demonstrate that bending of the single quantum well does not significantly affect the characteristics of the cavity polaritons. This work paves the way to broaden the range of potential applications of intersubband cavity polaritons including soft and wearable photonics.

More Details

Modeling Coordinate Transformations in the Dragonfly Nervous System

ACM International Conference Proceeding Series

Plunkett, Claire; Chance, Frances S.

Coordinate transformations are a fundamental operation that must be performed by any animal relying upon sensory information to interact with the external world. We present a neural network model that performs a coordinate transformation from the dragonfly eye's frame of reference to the body's frame of reference while hunting. We demonstrate that the model successfully calculates turns required for interception, and discuss how future work will compare our model with biological dragonfly neural circuitry and guide neural-inspired neuromorphic implementations of coordinate transformations.

More Details

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

SAE Technical Papers

Rajasegar, Rajavasanth R.; Srna, Ales S.

Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions. Direct-injection LPG, owing to its thermo-physical properties is more prone to spray collapse than gasoline sprays. However, the impact of spray collapse for high-volatility LPG on mixture preparation and subsequent combustion is not fully understood. To this end, direct-injection, laser-spark ignition experiments using propane as a surrogate for LPG under lean and stoichiometric engine operating conditions were carried out in an optically accessible, single cylinder, heavy-duty, diesel engine. A quick-switching parallel propane and iso-octane fuel system allows for easy comparison between the two fuels. Fuel temperature, operating equivalence ratio and injection timing are varied for a parametric study. In addition to combustion characterization using conventional cylinder pressure measurements, optical diagnostics are employed. These include infrared (IR) imaging for quantifying fuel-air mixture homogeneity and high-speed natural luminosity imaging for tracking the spatial and temporal progression of combustion. Imaging of infrared emission from compression-heated fuel does not reveal any significant differences in the signal distribution between collapsing and non-collapsing sprays at the spark timing. Irrespective of coolant temperatures, early injection timing resulted in a homogeneous mixture that lead to repeatable flame evolution with minimal cycle-to-cycle variability for both LPG and iso-octane. However, late injection timing resulted in mixture inhomogeneity and non-isotropic turbulence distribution. Under lean operation with late injection timing, LPG combustion is shown to benefit from a more favorable mixture distribution and flow properties induced by spray collapse. On the other hand, identical operating conditions proved to be detrimental for iso-octane combustion most likely caused by distribution of lean mixtures near the spark location that negatively impact initial flame kernel growth leading to increased cycle-to-cycle variability.

More Details

Modeling Coordinate Transformations in the Dragonfly Nervous System

ACM International Conference Proceeding Series

Plunkett, Claire; Chance, Frances S.

Coordinate transformations are a fundamental operation that must be performed by any animal relying upon sensory information to interact with the external world. We present a neural network model that performs a coordinate transformation from the dragonfly eye's frame of reference to the body's frame of reference while hunting. We demonstrate that the model successfully calculates turns required for interception, and discuss how future work will compare our model with biological dragonfly neural circuitry and guide neural-inspired neuromorphic implementations of coordinate transformations.

More Details

Shunting Inhibition as a Neural-Inspired Mechanism for Multiplication in Neuromorphic Architectures

ACM International Conference Proceeding Series

Chance, Frances S.; Cardwell, Suma G.

Shunting inhibition is a potential mechanism by which biological systems multiply two time-varying signals, most recently proposed in single neurons of the fly visual system. Our work demonstrates this effect in a biological neuron model and the equivalent circuit in neuromorphic hardware modeling dendrites. We present a multi-compartment neuromorphic dendritic model that produces a multiplication-like effect using the shunting inhibition mechanism by varying leakage along the dendritic cable. Dendritic computation in neuromorphic architectures has the potential to increase complexity in single neurons and reduce the energy footprint for neural networks by enabling computation in the interconnect.

More Details

Stacking influence on the in-plane magnetic anisotropy in a 2D magnetic system

Nanoscale

Ruiz-Gomez, Sandra; Perez, Lucas; Mascaraque, Arantzazu; Santos, Benito; El Gabaly Marquez, Farid E.; Schmid, Andreas K.; De La Figuera, Juan

The magnetization patterns on three atomic layers thick islands of Co on Ru(0001) are studied by spin-polarized low-energy electron microscopy (SPLEEM). In-plane magnetized micrometer wide triangular Co islands are grown on Ru(0001). They present two different orientations correlated with two different stacking sequences which differ only in the last layer position. The stacking sequence determines the type of magnetization pattern observed: the hcp islands present very wide domain walls, while the fcc islands present domains separated by much narrower domain walls. The former is an extremely low in-plane anisotropy system. We estimate the in-plane magnetic anisotropy of the fcc regions to be 1.96 × 104 J m−3 and of the hcp ones to be 2.5 × 102 J m−3

More Details

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

SAE International Journal of Advances and Current Practices in Mobility

Laichter, Judith; Kaiser, Sebastian A.; Rajasegar, Rajavasanth R.; Srna, Ales S.

Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane. During the injection event, the originally annular jet collapses onto the jet axis within 1°CA after jet emergence and within 10 mm downstream of the nozzle. Multiple shock cells are visible - their size decreases with decreasing pressure ratio. The results of the equivalence ratio distribution show high cyclic variability of mixing for all injection timings during the compression stroke, but only minor variability with early injection during the intake stroke. The ensemble-mean fuel distribution shows that fuel-rich zones shift from the intake side to the exhaust side of the combustion chamber as the injection is advanced. Probability density functions of global equivalence ratio and equivalence ratio at potential spark locations suggest that retarded fuel injection might significantly increase NO emissions and the cyclic variability of early flame kernel development.

More Details

Goemans-Williamson MAXCUT approximation algorithm on Loihi

ACM International Conference Proceeding Series

Theilman, Bradley; Aimone, James B.

Approximation algorithms for computationally complex problems are of significant importance in computing as they provide computational guarantees of obtaining practically useful results for otherwise computationally intractable problems. The demonstration of implementing formal approximation algorithms on spiking neuromorphic hardware is a critical step in establishing that neuromorphic computing can offer cost-effective solutions to significant optimization problems while retaining important computational guarantees on the quality of solutions. Here, we demonstrate that the Loihi platform is capable of effectively implementing the Goemans-Williamson (GW) approximation algorithm for MAXCUT, an NP-hard problem that has applications ranging from VLSI design to network analysis. We show that a Loihi implementation of the approximation step of the GW algorithm obtains equivalent maximum cuts of graphs as conventional algorithms, and we describe how different aspects of architecture precision impacts the algorithm performance.

More Details

Intrinsic and Extrinsic Factors Influencing the Dynamics of VO2 Mott Oscillators

Physical Review Applied

Kumar, Suhas K.; Bohaichuk, Stephanie M.

Oscillatory devices have gained significant interest recently as key components of computing systems based on biomimetic neuronal spiking. An understanding of the time scales underlying the spiking is essential for engineering fast, controllable, low energy devices. However, we find that the intrinsic dynamics of these devices are difficult to properly characterize, as they can be heavily influenced by the external circuitry used to measure them. Here we demonstrate these challenges using a VO2 Mott oscillator with a sub-100 nm effective size, achieved using a nanogap cut in a metallic carbon nanotube electrode. Given the nanoscale thermal volume of this device, it would be expected to exhibit rapid oscillations. However, due to external parasitics present within commonly used current sources, we see orders of magnitude slower dynamics. Here, we outline methods for determining when measurements are dominated by extrinsic factors and discuss the operating conditions under which intrinsic oscillation frequencies may be observed.

More Details

Effect of Linker Structure and Functionalization on Secondary Gas Formation in Metal-Organic Frameworks

Journal of Physical Chemistry A

Rimsza, Jessica R.; Nenoff, T.M.; Christian, Matthew S.

Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with −OH, −NH2, and −SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.

More Details

In situ investigation of ion irradiation-induced amorphization of (Ge2Sb2Te5)1−xCx [0 ≤ x ≤ 0.12]

Journal of Applied Physics

Lang, Eric; Clark, Trevor C.; Schoell, Ryan; Hattar, Khalid; Adams, David P.

Chalcogenide thin films that undergo reversible phase changes show promise for use in next-generation nanophotonics, microelectronics, and other emerging technologies. One of the many studied compounds, Ge 2 Sb 2 Te 5 , has demonstrated several useful properties and performance characteristics. However, the efficacy of benchmark Ge 2 Sb 2 Te 5 is restricted by amorphous phase thermal stability below ∼150 °C, limiting its potential use in high-temperature applications. In response, previous studies have added a fourth species (e.g., C) to sputter-deposited Ge 2 Sb 2 Te 5 , demonstrating improved thermal stability. Our current research confirms reported thermal stability enhancements and assesses the effects of carbon on crystalline phase radiation response. Through in situ transmission electron microscope irradiation studies, we examine the effect of C addition on the amorphization behavior of initially cubic and trigonal polycrystalline films irradiated using 2.8 MeV Au to various doses up to 1 × 10 15  cm −2 . It was found that increased C content reduces radiation tolerance of both cubic and trigonal phases.

More Details

Validation study of sodium pool fire modeling efforts in $\mathrm{MELCOR}$ and $\mathrm{SPHINCS}$ codes

Nuclear Engineering and Design

Laros, James H.; Luxat, David L.; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi

Discharge of sodium coolant into containment from a sodium-cooled fast reactor vessel can occur in the event of a pipe leak or break. In this situation, some of the liquid sodium droplets discharged from the coolant system will react with oxygen in the air before reaching the containment. This phase of the event is normally termed the sodium spray fire phase. Unreacted sodium droplets pool on the containment floor where continued reaction with containment atmospheric oxygen occurs. This phase of the event is normally termed the sodium pool fire phase. Both phases of these sodium-oxygen reactions (or fires) are important to model because of the heat addition and aerosol generation that occur. Any fission products trapped in the sodium coolant may also be released during this progression of events, which if released from containment could pose a health risk to workers and the public. The paper describes progress of an international collaborative research in the area of the sodium fire modeling in the sodium-cooled fast reactors between the United States and Japan under the framework of the Civil Nuclear Energy Research and Development Working Group. In this collaboration between Sandia National Laboratories and Japan Atomic Energy Agency, the validation basis for and modeling capabilities of sodium spray and pool fires in MELCOR of Sandia National Laboratories and SPHINCS of Japan Atomic Energy Agency are being enhanced. Here this study documents MELCOR and SPHINCS sodium pool fire model validation exercises against the JAEA’s sodium pool fire experiments, F7-1 and F7-2. The proposed enhancement of the sodium pool fire models in MELCOR through addition of thermal hydraulic and sodium spreading models that enable a better representation of experimental results is also described.

More Details

The Effect of Surface Terminations on the Initial Stages of TiO2 Deposition on Functionalized Silicon

ChemPhysChem

Parke, Tyler; Silva-Quinones, Dhamelyz; Wang, George T.; Teplyakov, Andrew V.

As atomic layer deposition (ALD) emerges as a method to fabricate architectures with atomic precision, emphasis is placed on understanding surface reactions and nucleation mechanisms. ALD of titanium dioxide with TiCl4 and water has been used to investigate deposition processes in general, but the effect of surface termination on the initial TiO2 nucleation lacks needed mechanistic insights. This work examines the adsorption of TiCl4 on Cl−, H−, and HO− terminated Si(100) and Si(111) surfaces to elucidate the general role of different surface structures and defect types in manipulating surface reactivity of growth and non-growth substrates. The surface sites and their role in the initial stages of deposition are examined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Density functional theory (DFT) computations of the local functionalized silicon surfaces suggest oxygen-containing defects are primary drivers of selectivity loss on these surfaces.

More Details

Transient Photocurrent From High-Voltage Vertical GaN Diodes Irradiated With Electrons: Experiments and Simulations

IEEE Transactions on Nuclear Science

Koukourinkova-Duncan, Sabina; Colón, Albert; Doyle, Barney L.; Vizkelethy, Gyorgy V.; Pickrell, Gregory P.; Gunning, Brendan P.; Kropka, Kimberly E.; Bielejec, Edward S.; Wampler, William R.

Radiation-hard high-voltage vertical GaN p-n diodes are being developed for use in power electronics subjected to ionizing radiation. We present a comparison of the measured and simulated photocurrent response of diodes exposed to ionizing irradiation with 70 keV and 20 MeV electrons at dose rates in the range of 1.4× 107 - 5.0× 108 rad(GaN)/s. The simulations correctly predict the trend in the measured steady-state photocurrent and agree with the experimental results within a factor of 2. Furthermore, simulations of the transient photocurrent response to dose rates with uniform and non-uniform ionization depth profiles uncover the physical processes involved that cannot be otherwise experimentally observed due to orders of magnitude larger RC time constant of the test circuit. The simulations were performed using an eXploratory Physics Development code developed at Sandia National Laboratories. The code offers the capability to include defect physics under more general conditions, not included in commercially available software packages, extending the applicability of the simulations to different types of radiation environments.

More Details

Tanana River Test Site Model Verification Using the Marine and Hydrokinetic Toolkit (MHKiT)

Energies

Laros, James H.; Olson, Sterling S.; Fao, Rebecca; Keester, Adam J.; Mcvey, James

The marine energy (ME) industry historically lacked a standardized data processing toolkit for common tasks such as data ingestion, quality control, and visualization. The marine and hydrokinetic toolkit (MHKiT) solved this issue by providing a public software deployment (open-source and free) toolkit for the ME industry to store and maintain commonly used functionality for wave, tidal, and river energy. This paper demonstrates an initial model verification study in MHKiT. Using Delft3D, a numerical model of the Tanana River Test Site (TRTS) at Nenana, Alaska was created. Field data from the site was collected using an Acoustic Doppler Current Profiler (ADCP) at the proposed Current Energy Converter (CEC) locations. MHKiT is used to process model simulations from Delft3D and compare them to the transect data from the ADCP measurements at TRTS. The ability to use a single tool to process simulation and field data demonstrates the ease at which the ME industry can obtain results and collaborate across specialties, reducing errors and increasing efficiency.

More Details

Lighting up hot stuff

Nature Chemistry

Appelhans, Leah A.

Plasmonic heating by nanoparticles has been used to promote a range of chemical reactions. Now, thermoplasmonic activation has been applied to latent ruthenium catalysts, enabling olefin metathesis initiated by visible and infrared light. Additionally, the desire to harness light to drive chemical transformations has surely existed as long as the study of chemistry itself. In the earliest documented applications, light was used simply as a heat source — for example, in the distillation of liquids. Since that time, our knowledge of how light and matter interact has increased exponentially, with greater mechanistic and molecular understanding enabling modern photochemists to design molecules with a myriad of finely tuned optical properties for catalysis, biochemistry, optoelectronics and more. Nonetheless, the design and optimization of molecules to achieve specific optical properties is still challenging, and for some applications, a return to the ‘simplest’ transformation — that of light to heat — can offer a more efficient approach to achieve light-mediated chemical reactions. Now, writing in Nature Chemistry, Yossi Weizmann and colleagues describe a strategy for organic and polymer synthesis driven by the conversion of light to heat.

More Details

Analytical solution and parameter estimation for heat of wetting and vapor adsorption during spontaneous imbibition in tuff

International Journal of Heat and Mass Transfer

Good, Forest T.; Kuhlman, Kristopher L.; LaForce, Tara; Paul, Matthew J.; Heath, Jason

An analytical expression is derived for the thermal response observed during spontaneous imbibition of water into a dry core of zeolitic tuff. Sample tortuosity, thermal conductivity, and thermal source strength are estimated from fitting an analytical solution to temperature observations during a single laboratory test. The closed-form analytical solution is derived using Green's functions for heat conduction in the limit of “slow” water movement; that is, when advection of thermal energy with the wetting front is negligible. The solution has four free fitting parameters and is efficient for parameter estimation. Laboratory imbibition data used to constrain the model include a time series of the mass of water imbibed, visual location of the wetting front through time, and temperature time series at six locations. The thermal front reached the end of the core hours before the visible wetting front. Thus, the predominant form of heating during imbibition in this zeolitic tuff is due to vapor adsorption in dry zeolitic rock ahead of the wetting front. The separation of the wetting front and thermal front in this zeolitic tuff is significant, compared to wetting front behavior of most materials reported in the literature. This work is the first interpretation of a thermal imbibition response to estimate transport (tortuosity) and thermal properties (including thermal conductivity) from a single laboratory test.

More Details

Influence of Realistic, Cyclic Atmospheric Cycles on the Pitting Corrosion of Austenitic Stainless Steels

Journal of the Electrochemical Society

Schaller, Rebecca S.; Karasz, Erin K.; Bryan, Charles R.; Snow, J.; Taylor, Jason M.; Kelly, R.G.; Montoya, T.

Pitting corrosion was evaluated on stainless steels 304H, 304, and 316L the surfaces of which had ASTM seawater printed on them as a function of surface roughness after exposure to an exemplar realistic atmospheric diurnal cycle for up to one year. Methods to evaluate pitting damage included optical imaging, scanning electron microscopy imaging, profilometry analysis, and polarization scans. The developed cyclic exposure environment did not significantly influence pitting morphology nor depth in comparison to prior static exposure environments. Cross-hatching was observed in a majority of pits for all material compositions with the roughest surface finish (#4 finish) and in all surface finishes for the 304H composition. Evidence is provided that cross-hatched pit morphologies are caused by slip bands produced during the grinding process for the #4 finish or by material processing. Additionally, micro-cracking was observed in pits formed on samples with the #4 surface finish and was greatly reduced or absent for pits formed on samples with smooth surface finishes. This suggests that both a low RH leading to an MgCl2-dominated environment and a rough surface containing significant residual stress are necessary for micro-cracking. Finally, the use of various characterization techniques and cross sectioning was employed to both qualitatively and quantitatively assess pitting damage across all SS compositions and surface finishes.

More Details

The Flux-Differencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere

Journal of Advances in Modeling Earth Systems

Souza, A.N.; He, J.; Bischoff, T.; Waruszewski, MacIej; Novak, L.; Barra, V.; Gibson, T.; Sridhar, A.; Kandala, S.; Byrne, S.; Wilcox, L.C.; Kozdon, J.; Giraldo, F.X.; Knoth, O.; Marshall, J.; Ferrari, R.; Schneider, T.

Dynamical cores used to study the circulation of the atmosphere employ various numerical methods ranging from finite-volume, spectral element, global spectral, and hybrid methods. In this work, we explore the use of Flux-Differencing Discontinuous Galerkin (FDDG) methods to simulate a fully compressible dry atmosphere at various resolutions. We show that the method offers a judicious compromise between high-order accuracy and stability for large-eddy simulations and simulations of the atmospheric general circulation. In particular, filters, divergence damping, diffusion, hyperdiffusion, or sponge-layers are not required to ensure stability; only the numerical dissipation naturally afforded by FDDG is necessary. We apply the method to the simulation of dry convection in an atmospheric boundary layer and in a global atmospheric dynamical core in the standard benchmark of Held and Suarez (1994, https://doi.org/10.1175/1520-0477(1994)075〈1825:apftio〉2.0.co;2).

More Details

Calibrating constitutive models with full-field data via physics informed neural networks

Strain

Hamel, Craig H.; Long, Kevin N.; Kramer, Sharlotte L.

The calibration of solid constitutive models with full-field experimental data is a long-standing challenge, especially in materials that undergo large deformations. In this paper, we propose a physics-informed deep-learning framework for the discovery of hyperelastic constitutive model parameterizations given full-field surface displacement data and global force-displacement data. Contrary to the majority of recent literature in this field, we work with the weak form of the governing equations rather than the strong form to impose physical constraints upon the neural network predictions. The approach presented in this paper is computationally efficient, suitable for irregular geometric domains, and readily ingests displacement data without the need for interpolation onto a computational grid. A selection of canonical hyperelastic material models suitable for different material classes is considered including the Neo–Hookean, Gent, and Blatz–Ko constitutive models as exemplars for general non-linear elastic behaviour, elastomer behaviour with finite strain lock-up, and compressible foam behaviour, respectively. We demonstrate that physics informed machine learning is an enabling technology and may shift the paradigm of how full-field experimental data are utilized to calibrate constitutive models under finite deformations.

More Details

Increased range and contrast in fog with circularly polarized imaging

Applied Optics

Vander Laan, John D.; Redman, Brian J.; Segal, Jacob W.; Westlake, Karl W.; Wright, Jeremy B.; Bentz, Brian Z.

Fogs, low lying clouds, and other highly scattering environments pose a challenge for many commercial and national security sensing systems. Current autonomous systems rely on optical sensors for navigation whose performance is degraded by highly scattering environments. In our previous simulation work, we have shown that polarized light can penetrate through a scattering environment such as fog. We have demonstrated that circularly polarized light maintains its initial polarization state better than linearly polarized light, even through large numbers of scattering events and thus ranges. This has recently been experimentally verified by other researchers. In this work, we present the design, construction, and testing of active polarization imagers at short-wave infrared and visible wavelengths. We explore multiple polarimetric configurations for the imagers, focusing on linear and circular polarization states. The polarized imagers were tested at the Sandia National Laboratories Fog Chamber under realistic fog conditions. We show that active circular polarization imagers can increase range and contrast in fog better than linear polarization imagers. We show that when imaging typical road sign and safety retro-reflective films, circularly polarized imaging has enhanced contrast throughout most fog densities/ranges compared to linearly polarized imaging and can penetrate over 15 to 25 m into the fog beyond the range limit of linearly polarized imaging, with a strong dependence on the interaction of the polarization state with the target materials.

More Details

PV module operating conditions and temperature measurements: an open dataset for PV research

Driesse, Anton; Theristis, Marios; Stein, Joshua S.

This report describes the structure and content of an open dataset created for the purpose of testing and validating PV module temperature prediction models and their parameters. The dataset contains the main environmental parameters that affect temperature: irradiance, ambient temperature, wind speed and down-welling infrared radiation, as well as measured back-of-module temperature.

More Details

Global horizontal spectral irradiance and module spectral response measurements: an open dataset for PV research

Driesse, Anton; Theristis, Marios; Stein, Joshua S.

This report describes the creation process and final content of a spectral irradiance dataset for Albuquerque, New Mexico accompanied by a set of spectral response measurements for modules deployed at the same location. The spectral irradiance measurements were made using horizontally mounted spectroradiometers; therefore, they represent global horizontal irradiance. The dataset combines non-continuous spectroradiometer and weather measurements from a two-year period into a single calendar year. The data files are accompanied by extensive metadata as well as example calculations and graphs to demonstrate the potential uses of this database. The spectral response measurements were carried out by the National Renewable Energy Laboratory using 12 commercial silicon modules types that are undergoing long-term evaluation at Sandia National Laboratories in Albuquerque.

More Details

Genome Sequence of Mycobacteriophage Bassalto

Microbiology Resource Announcements

Barekzi, Nazir; Wilkins, Meagan N.; Williams, Aumon L.; Moore, Afiya J.; Duckett, Zachary R.; Tindall, Danielle M.; Eaddy, Donnetta R.; Johnson, Mary B.; Bass, Malcolm; Mageeney, Catherine M.

Bassalto is a newly isolated phage of Mycobacterium smegmatis mc2155 from the campus grounds of Norfolk State University in Norfolk, VA. Bassalto belongs to the cluster B and subcluster B3 mycobacteriophages, based on the nucleotide composition and comparison to known mycobacteriophages.

More Details

Lignin deconstruction by anaerobic fungi

Nature Microbiology

Lankiewicz, Thomas S.; Choudhary, Hemant; Gao, Yu; Amer, Bashar; Lillington, Stephen P.; Leggieri, Patrick A.; Brown, Jennifer L.; Swift, Candice L.; Lipzen, Anna; Na, Hyunsoo; Amirebrahimi, Mojgan; Theodorou, Michael K.; Baidoo, Edward E.K.; Barry, Kerrie; Grigoriev, Igor V.; Timokhin, Vitaliy I.; Gladden, John M.; Singh, Seema S.; Mortimer, Jenny C.; Ralph, John; Simmons, Blake A.; Singer, Steven W.; O'Malley, Michelle A.

Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.

More Details
Results 1601–1800 of 96,771
Results 1601–1800 of 96,771