Publications

6 Results

Search results

Jump to search filters

Correlating real-world incidents with vessel traffic off the coast of Hawaii, 2017–2020

Discover Oceans

Henriksen, Amelia

Because of the high-risk nature of emergencies and illegal activities at sea, it is critical that algorithms designed to detect anomalies from maritime traffic data be robust. However, there exist no publicly available maritime traffic data sets with real-world expert-labeled anomalies. As a result, most anomaly detection algorithms for maritime traffic are validated without ground truth. We introduce the HawaiiCoast_GT data set, the first ever publicly available automatic identification system (AIS) data set with a large corresponding set of true anomalous incidents. This data set—cleaned and curated from raw Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA) automatic identification system (AIS) data—covers Hawaii’s coastal waters for four years (2017–2020) and contains 88,749,176 AIS points for a total of 2622 unique vessels. This includes 208 labeled tracks corresponding to 154 rigorously documented real-world incidents.

More Details

A Workflow for Accelerating Multimodal Data Collection for Electrodeposited Films

Integrating Materials and Manufacturing Innovation

Bassett, Kimberly L.; Watkins, Tylan W.; Coleman, Jonathan J.; Bianco, Nathan; Bailey, Lauren S.; Pillars, Jamin R.; Williams, Samuel G.; Babuska, Tomas F.; Curry, John C.; DelRio, Frank W.; Henriksen, Amelia; Garland, Anthony G.; Hall, Justin; Boyce, Brad B.; Krick, Brandon A.

Future machine learning strategies for materials process optimization will likely replace human capital-intensive artisan research with autonomous and/or accelerated approaches. Such automation enables accelerated multimodal characterization that simultaneously minimizes human errors, lowers costs, enhances statistical sampling, and allows scientists to allocate their time to critical thinking instead of repetitive manual tasks. Previous acceleration efforts to synthesize and evaluate materials have often employed elaborate robotic self-driving laboratories or used specialized strategies that are difficult to generalize. Herein we describe an implemented workflow for accelerating the multimodal characterization of a combinatorial set of 915 electroplated Ni and Ni–Fe thin films resulting in a data cube with over 160,000 individual data files. Our acceleration strategies do not require manufacturing-scale resources and are thus amenable to typical materials research facilities in academic, government, or commercial laboratories. The workflow demonstrated the acceleration of six characterization modalities: optical microscopy, laser profilometry, X-ray diffraction, X-ray fluorescence, nanoindentation, and tribological (friction and wear) testing, each with speedup factors ranging from 13–46x. In addition, automated data upload to a repository using FAIR data principles was accelerated by 64x.

More Details

Sputter-Deposited Mo Thin Films: Multimodal Characterization of Structure, Surface Morphology, Density, Residual Stress, Electrical Resistivity, and Mechanical Response

Integrating Materials and Manufacturing Innovation

Kalaswad, Matias; Custer, Joyce O.; Addamane, Sadhvikas J.; Khan, Ryan M.; Jauregui, Luis J.; Babuska, Tomas F.; Henriksen, Amelia; DelRio, Frank W.; Dingreville, Remi P.; Adams, David P.

Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. Here, the phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors’ preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.

More Details
6 Results
6 Results