Photocatalytic water splitting using suspensions of nanoparticle photocatalysts is a promising route to economically sustainable production of green hydrogen. The principal challenge is to develop photocatalysts with overall solar-to-hydrogen conversion efficiency that exceeds 10 percent. In this project we have developed a new platform for investigating candidate materials for photocatalytic water splitting. Our platform consists of patterned Au electrodes and a Ag/AgCl reference electrode on an insulating substrate onto which we disperse nanoparticle photocatalysts. We then cover the substrate with a thin layer of ionogel containing a protic ionic liquid that dissolves water from the ambient. Using this platform we have demonstrated photoelectrochemical activity mapping for single and small clusters of BiVO4 nanoparticle photocatalysts and correlated these results to their Raman and photoluminescence spectra. The preliminary results suggest a strong correlation for low efficiency nanoparticles, followed by saturation for those with higher activities, indicating that interface reaction or electrolyte transport become the limiting factor. We anticipate that further application of this platform to investigation of candidate photocatalyst materials will provide useful insights into the mechanisms that limit their performance.
We show that the deposition of the solid-state electrolyte LiPON onto films of V2O5 leads to their uniform lithiation of up to 2.2 Li per V2O5, without affecting the Li concentration in the LiPON and its ionic conductivity. Our results indicate that Li incorporation occurs during LiPON deposition, in contrast to earlier mechanisms proposed to explain postdeposition Li transfer between LiPON and LiCoO2. We use our discovery to demonstrate symmetric thin film batteries with a capacity of >270 mAh/g, at a rate of 20C, and 1600 cycles with only 8.4% loss in capacity. We also show how autolithiation can simplify fabrication of Li iontronic transistors attractive for emerging neuromorphic computing applications. Our discovery that LiPON deposition results in autolithiation of the underlying insertion oxide has the potential to substantially simplify and enhance the fabrication process for thin film solid state Li ion batteries and emerging lithium iontronic neuromorphic computing devices.
We report ion trapping in crystalline domains of electrochemical transistors can be used to create a device capable of both volatile and non-volatile operation.
This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .