Publications

11 Results

Search results

Jump to search filters

Permutation-adapted complete and independent basis for atomic cluster expansion descriptors

Journal of Computational Physics

Goff, J.M.; Sievers, C.; Wood, M.A.; Thompson, A.P.

Atomic cluster expansion (ACE) methods provide a systematic way to describe particle local environments of arbitrary body order. For practical applications it is often required that the basis of cluster functions be symmetrized with respect to rotations and permutations. Existing methodologies yield sets of symmetrized functions that are over-complete. These methodologies thus require an additional numerical procedure, such as singular value decomposition (SVD), to eliminate redundant functions. In this work, it is shown that analytical linear relationships for subsets of cluster functions may be derived using recursion and permutation properties of generalized Wigner symbols. From these relationships, subsets (blocks) of cluster functions can be selected such that, within each block, functions are guaranteed to be linearly independent. It is conjectured that this block-wise independent set of permutation-adapted rotation and permutation invariant (PA-RPI) functions forms a complete, independent basis for ACE. Along with the first analytical proofs of block-wise linear dependence of ACE cluster functions and other theoretical arguments, numerical results are offered to demonstrate this. The utility of the method is demonstrated in the development of an ACE interatomic potential for tantalum. Using the new basis functions in combination with Bayesian compressive sensing sparse regression, some high degree descriptors are observed to persist and help achieve high-accuracy models.

More Details

Shadow molecular dynamics and atomic cluster expansions for flexible charge models

Goff, J.M.; Rohskopf, Andrew D.

A shadow molecular dynamics scheme for flexible charge models is presented, where the shadow Born-Oppenheimer potential is derived from a coarse-grained approximation of range-separated density functional theory. The interatomic potential, including the atomic electronegativities and the charge-independent short-range part of the potential and force terms, are modeled by the linear atomic cluster expansion (ACE), which provides a computationally efficient alternative to many machine learning methods. The shadow molecular dynamics scheme is based on extended Lagrangian (XL) Born-Oppenheimer molecular dynamics (BOMD) [Eur. Phys. J. B 94, 164 (2021)]. XL-BOMD provides a stable dynamics, while avoiding the costly computational overhead associated with solving an all-to-all system of equations, which normally is required to determine the relaxed electronic ground state prior to each force evaluation. To demonstrate the proposed shadow molecular dynamics scheme for flexible charge models using the atomic cluster expansion, we emulate the dynamics generated from self-consistent charge density functional tight-binding (SCC-DFTB) theory using a second-order charge equilibration (QEq) model. The charge-independent potentials and electronegativities of the QEq model are trained for a supercell of uranium oxide (UO2) and a molecular system of liquid water. The combined ACE + XL-QEq dynamics are stable over a wide range of temperatures both for the oxide and the molecular systems, and provide a precise sampling of the Born-Oppenheimer potential energy surfaces. Accurate ground Coulomb energies are produced by the ACE-based electronegativity model during an NVE simulation of UO2, predicted to be within 1 meV of those from SCC-DFTB on average during comparable simulations.

More Details
11 Results
11 Results