Publications

Results 1–25 of 214

Search results

Jump to search filters

Plenoptic Background Oriented Schlieren Imaging

Coded Optical Imaging

Munz, Elise D.; Davis, Jenna; Guildenbecher, Daniel R.; Thurow, Brian

Plenoptic background-oriented schlieren is a diagnostictechnique that enables the measure-ment of three-dimensional refractive gradients by a combination of background-oriented schlieren and a plenoptic light field camera. This plenoptic camera is a modification of a traditional camera via the insertion of an array of microlenses between the imaging lens and digital sensor. This allows the collection of both spatial and angular information on the incoming light rays and therefore provides three-dimensional information about the imaged scene. Background-oriented schlieren requires a relatively simple experimental configurationincludingonlyacameraviewing a patterned background through the density field of interest. By using a plenoptic camera to capture background-oriented schlieren images the optical distortion created by density gradients in three dimensions can be measured. This chapter is intended to review critical developments in plenoptic background-oriented schlieren imaging and provide an outlook for future applications of this measurement technique.

More Details

Post-detonation fireball modeling: Validation of freeze out approximations

Physics of Fluids

Egeln, Anthony A.; Hewson, John C.; Guildenbecher, Daniel R.; Marinis, Ryan T.; Welliver, Marc W.; Houim, Ryan W.

A numerical simulation study was performed to examine the post-detonation reaction processes produced by the detonation of a 12 mm diameter hemispherical pentaerythritol tetranitrate (PETN) explosive charge. The simulations used a finite rate detailed chemical reaction model consisting of 59 species and 368 reactions to capture post-detonation reaction processes including air dissociation from Mach 19+ shock waves that initially break out of the PETN charge, reactions within the detonation products during expansion, and afterburning when the detonation products mix with the shock heated air. The multi-species and thermodynamically complete Becker-Kistiakowsky-Wilson real-gas equation of state is used for the gaseous phase to allow for the mixing of reactive species. A recent simplified reactive burn model is used to propagate the detonation through the charge and allow for detailed post-detonation reaction processes. The computed blast, shock structures, and mole fractions of species within the detonation products agree well with experimental measurements. A comparison of the simulation results to equilibrium calculations indicates that the assumption of a local equilibrium is fairly accurate until the detonation products rapidly cool to temperatures in the range of 1500-1900 K by expansion waves. Below this range, the computed results show mole fractions that are nearly chemically frozen within the detonation products for a significant portion of expansion. These results are consistent with the freeze out approximation used in the blast modeling community.

More Details

Drop Interactions with the Conical Shock Structure Generated by a Mach 4.5 Projectile

AIAA Journal

Guildenbecher, Daniel R.; Delgado, Paul M.; White, Glen W.; Reardon, Sam M.; Stauffacher, Howard L.; Beresh, Steven J.; Daniel, Kyle

This work presents measurements of liquid drop deformation and breakup time behind approximately conical shock waves and evaluates the predictive capabilities of low-order models and correlations developed using planar shock experiments. A conical shock was approximated by firing a bullet at Mach 4.5 past a vertical column of water drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension were characterized using backlit stereo images taken at 500 kHz. The gas density and velocity fields experienced by the drops were estimated using a Reynolds-averaged Navier-Stokes simulation of the bullet. Classical correlations predict drop breakup times and deformation in error by a factor of 3 or more. The Taylor analogy breakup (TAB) model predicts deformed drop diameters that agree within the confidence bounds of the ensemble-averaged experimental values using a dimensionless constant C2 = 2 compared to the accepted value C2 = 2/3. Results demonstrate existing correlations are inadequate for predicting the drop response to the three-dimensional relaxation of the flowfield downstream of a conical-like shock and suggest the TAB model results represent a path toward improved predictions.

More Details

Numerical Investigation of Wall-Cooling Effect on Aero-Optical Distortions for Hypersonic Boundary Layer

AIAA Journal

Castillo, Pedro; Gross, Andreas; Miller, Nathan M.; Lynch, Kyle P.; Guildenbecher, Daniel R.

Compressible wall-modeled large-eddy simulations of Mach 8 turbulent boundary-layer flows over a flat plate were carried out for the conditions of the hypersonic wind tunnel at Sandia National Laboratories. The simulations provide new insight into the effect of wall cooling on the aero-optical path distortions for hypersonic turbulent boundary-layer flows. Four different wall-to-recovery temperature ratios, 0.3, 0.48, 0.71, and 0.89, are considered. Despite the much lower grid resolution, the mean velocity, temperature, and resolved Reynolds stress profiles from the simulation for a temperature ratio of 0.48 are in good agreement with those from a reference direct numerical simulation. The normalized root-mean-square optical path difference obtained from the present simulations is compared with that from reference direct numerical simulations, Sandia experiments, as well as predictions obtained with a semi-analytical model by Notre Dame University. The present analysis focuses on the effect of wall cooling on the wall-normal density correlations, on key underlying assumptions of the aforementioned model such as the strong Reynolds analogy, and on the elevation angle effect on the optical path difference. Wall cooling is found to increase the velocity fluctuations and decrease the density fluctuations, resulting in an overall reduction of the normalized optical path distortion. Compared to the simulations, the basic strong Reynolds analogy overpredicts the temperature fluctuations for cooled walls. Also different from the strong Reynolds analogy, the velocity and temperature fluctuations are not perfectly anticorrelated. Finally, as the wall temperature is raised, the density correlation length, away from the wall but inside the boundary layer, increases significantly for beam paths tilted in the downstream direction.

More Details

Ultraviolet digital holographic microscopy (DHM) of micron-scale particles from shocked Sn ejecta

Optics Express

Guildenbecher, Daniel R.; McMaster, Anthony M.; Corredor, Andrew; Malone, Bob; Mance, Jason; Rudziensky, Emma; Sorenson, Danny; Danielson, Jeremy; Duke, Dana L.

A cloud of very fast, O(km/s), and very fine, O(µm), particles may be ejected when a strong shock impacts and possibly melts the free surface of a solid metal. To quantify these dynamics, this work develops an ultraviolet, long-working distance, two-pulse Digital Holographic Microscopy (DHM) configuration and is the first to replace film recording with digital sensors for this challenging application. A proposed multi-iteration DHM processing algorithm is demonstrated for automated measures of the sizes, velocities, and three-dimensional positions of non-spherical particles. Ejecta as small as 2 µm diameter are successfully tracked, while uncertainty simulations indicate that particle size distributions are accurately quantified for diameters ≥4 µm. These techniques are demonstrated on three explosively driven experiments. Measured ejecta size and velocity statistics are shown to be consistent with prior film-based recording, while also revealing spatial variations in velocities and 3D positions that have yet to be widely investigated. Having eliminated time-consuming analog film processing, the methodologies proposed here are expected to significantly accelerate future experimental investigation of ejecta physics.

More Details

Extinction Imaging Diagnostics for In Situ Quantification of Soot within Explosively Generated Fireballs

Propellants, Explosives, Pyrotechnics

Saltzman, Ashley J.; Brown, Alex; Wan, Kevin W.; Manin, Julien L.; Pickett, Lyle M.; Welliver, Marc W.; Guildenbecher, Daniel R.

Fireballs produced from the detonation of high explosives often contain particulates primarily composed of various phases of carbon soot. The transport and concentration of these particulates is of interest for model validation and emission characterization. This work proposes ultra-high-speed imaging techniques to observe a fireball's structure and optical depth. An extinction-based diagnostic applied at two wavelengths indicates that extinction scales inversely with wavelength, consistent with particles in the Rayleigh limit and dimensionless extinction coefficients which are independent of wavelength. Within current confidence bounds, the extinction-derived soot mass concentrations agree with expectations based upon literature reported soot yields. Results also identify areas of high uncertainty where additional work is recommended.

More Details

Analysis of Holography Techniques for Phase Distortion Removal in Extreme Environments

AIAA SciTech Forum and Exposition, 2023

McMaster, Anthony M.; Guildenbecher, Daniel R.; Mazumdar, Yi C.

Holography is an effective diagnostic for the three-dimensional imaging of multiphase and particle-laden flows. Traditional digital inline holography (DIH), however, is subject to distortions from phase delays caused by index-of-refraction changes. This prevents DIH from being implemented in extreme conditions where shockwaves and significant thermal gradients are present. To overcome this challenge, multiple techniques have been developed to correct for the phase distortions. In this work, several holography techniques for distortion removal are discussed, including digital off-axis holography, phase conjugate digital in-line holography, and electric field techniques. Then, a distortion cancelling off-axis holography configuration is implemented for distortion removal and a high-magnification phase conjugate system is evaluated. Finally, both diagnostics are applied to study extreme pyrotechnic igniter environments.

More Details

Temperature and H2O Measurements at 500 kHz in Hemispherical Post-Detonation Fireballs Using Scanned-Wavelength-Modulation Spectroscopy

AIAA SciTech Forum and Exposition, 2023

Chen, Damon; Guildenbecher, Daniel R.; Welliver, Marc W.

Laser absorption spectroscopy (LAS) was used to measure temperature and XH2O at a rate of 500 kHz in post-detonation fireballs of solid explosives. A 25 g hemisphere of pentaerythritol tetranitrate (PETN) was initiated with an exploding-bridgewire detonator to produce a post-detonation fireball that traveled radially toward a hardened optical probe. The probe contained a pressure transducer and the near-infrared optics needed to measure H2O absorption transitions near 7185.6 cm-1 and 6806 cm-1 using peak-picking scanned-wavelength modulation-spectroscopy with first-harmonic-normalized second-harmonic detection (scanned-WMS-2f/1f). The two lasers were scanned across the peak of an absorption line at 500 kHz and modulated at either 35 MHz for the laser near 7185.6 cm-1 or 45.5 MHz for the laser near 6806 cm-1. This enabled measurements of temperature and XH2O at 500 kHz in the shock-heated air and trailing post-detonation fireball. Time histories of pressure, temperature, and XH2O were acquired at multiple standoff distances in order to quantify the temporal evolution of these quantities in the post-detonation environment produced by PETN.

More Details

Experimental and synthetic laser-absorption-spectroscopy measurements of temperature, pressure, and CO at 1 MHz for evaluation of post-detonation fireball models

Proceedings of the Combustion Institute

Mathews, Garrett C.; Gomez, Mateo; Schwartz, Charles J.; Egeln, Anthony; Houim, Ryan; Son, Steven F.; Arienti, Marco A.; Thompson, Andrew D.; Welliver, Marc W.; Guildenbecher, Daniel R.; Goldenstein, Christopher S.

A quantum-cascade-laser-absorption-spectroscopy (QCLAS) diagnostic was used to characterize post-detonation fireballs of RP-80 detonators via measurements of temperature, pressure, and CO column pressure at a repetition rate of 1 MHz. Scanned-wavelength direct-absorption spectroscopy was used to measure CO absorbance spectra near 2008.5 cm−1 which are dominated by the P(0,31), P(2,20), and P(3,14) transitions. Line-of-sight (LOS) measurements were acquired 51 and 91 mm above the detonator surface. Three strategies were employed to facilitate interpretation of the LAS measurements in this highly nonuniform environment and to evaluate the accuracy of four post-detonation fireball models: (1) High-energy transitions were used to deliberately bias the measurements to the high-temperature outer shell, (2) a novel dual-zone absorption model was used to extract temperature, pressure, and CO measurements in two distinct regions of the fireball at times where pressure variations along the LOS were pronounced, and (3) the LAS measurements were compared with synthetic LAS measurements produced using the simulated distributions of temperature, pressure, and gas composition predicted by reactive CFD modeling. The results indicate that the QCLAS diagnostic provides high-fidelity data for evaluating post-detonation fireball models, and that assumptions regarding thermochemical equilibrium and carbon freeze-out during expansion of detonation gases have a large impact on the predicted chemical composition of the fireball.

More Details

High Temperature Gladstone-Dale Coefficient Measurements in a Free-Piston Shock Tube

AIAA SciTech Forum and Exposition, 2023

Wang, Gwendolyn T.; Daniel, Kyle; Lynch, Kyle P.; Guildenbecher, Daniel R.; Mazumdar, Yi C.

Accurately measuring aero-optical properties of non-equilibrium gases is critical for characterizing compressible flow dynamics and plasmas. At thermochemical non-equilibrium conditions, excited molecules begin to dissociate, causing optical distortion and non-constant Gladstone-Dale behavior. These regions typically occur behind a strong shock at high temperatures and pressures. Currently, no experimental data exists in the literature due to the small number of facilities capable of reaching such conditions and a lack of diagnostic techniques that can measure index of refraction across large, nearly-discrete gradients. In this work, a quadrature fringe imaging interferometer is applied at the Sandia free-piston high temperature shock tube for high temperature and pressure Gladstone-Dale measurements. This diagnostic resolves high-gradient density changes using a narrowband analog quadrature and broadband reference fringes. Initial simulations for target conditions show large deviations from constant Gladstone-Dale coefficient models and good matches with high temperature and pressure Gladstone-Dale models above 5000 K. Experimental results at 7653 K and 7.87 bar indicate that the index of refraction approaches high temperature and pressure theory, but significant flow bifurcation effects are noted in reflected shock.

More Details

Wall-Modeled Large-Eddy Simulation of Turbulent Mach 14 Boundary Layer for Aero-Optical Analysis

AIAA SciTech Forum and Exposition, 2023

Miller, Nathan M.; Lynch, Kyle P.; Guildenbecher, Daniel R.

A wall-modeled large-eddy simulation of a Mach 14 boundary layer flow over a flat plate was carried out for the conditions of the Arnold Engineering Development Complex Hypervelocity Tunnel 9. Adequate agreement of the mean velocity and temperature, as well as Reynolds stress profiles with a reference direct numerical simulation is obtained at much reduced grid resolution. The normalized root-mean-square optical path difference obtained from the present wall-modeled large-eddy simulations and reference direct nu- merical simulation are in good agreement with each other but below a prediction obtained from a semi-analytical relationship by Notre Dame University. This motivates an evalua- tion of the underlying assumptions of the Notre Dame model at high Mach number. For the analysis, recourse is taken to previously published wall-modeled large-eddy simulations of a Mach eight turbulent boundary layer. The analysis of the underlying assumptions focuses on the root-mean-square fluctuations of the thermodynamic quantities, on the strong Reynolds analogy, two-point correlations, and the linking equation. It is found that with increasing Mach number, the pressure fluctuations increase and the strong Reynolds anal- ogy over-predicts the temperature fluctuations. In addition, the peak of the correlation length shifts towards the boundary layer edge.

More Details

Aero-Optics of Hypersonic Turbulent Boundary Layers

Lynch, Kyle P.; Miller, Nathan M.; Guildenbecher, Daniel R.; Butler, Luke; Gordeyev, Stanislav; Castillo, Pedro; Gross, Andreas; Wang, Gwendolyn T.; Mazumdar, Yi C.

Aero-optics refers to optical distortions due to index-of-refraction gradients that are induced by aerodynamic density gradients. At hypersonic flow conditions, the bulk velocity is many times the speed of sound and density gradients may originate from shock waves, compressible turbulent structures, acoustic waves, thermal variations, etc. Due to the combination of these factors, aero-optic distortions are expected to differ from those common to sub-sonic and lower super-sonic speeds. This report summarizes the results from a 2019-2022 Laboratory Directed Research and Development (LDRD) project led by Sandia National Laboratories in collaboration with the University of Notre Dame, New Mexico State University, and the Georgia Institute of Technology. Efforts extended experimental and simulation methodologies for the study of turbulent hypersonic boundary layers. Notable experimental advancements include development of spectral de-aliasing techniques for highspeed wavefront measurements, a Spatially Selective Wavefront Sensor (SSWFS) technique, new experimental data at Mach 8 and 14, a Quadrature Fringe Imaging Interferometer (QFII) technique for time-resolved index-of-refraction measures, and application of QFII to shock-heated air. At the same time, model advancements include aero-optic analysis of several Direct Numerical Simulation (DNS) datasets from Mach 0.5 to 14 and development of wall-modeled Large Eddy Simulation (LES) techniques for aero-optic predictions. At Mach 8 measured and predicted root mean square Optical Path Differences agree within confidence bounds but are higher than semi-empirical trends extrapolated from lower Mach conditions. Overall, results show that aero-optic effects in the hypersonic flow regime are not simple extensions from prior knowledge at lower speeds and instead reflect the added complexity of compressible hypersonic flow physics.

More Details

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel R.; Jones, Elizabeth M.; Munz, Elise D.; Reu, Phillip L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details
Results 1–25 of 214
Results 1–25 of 214